SareHdRAIL

D3.2

Report on Design of TCMS Distributed
Simulation Framework Concept

Project number: 730830

Project acronym: Safe4RAIL

Safe4RAIL: SAFE architecture for Robust
distributed Application Integration in roLling stock

Project title:

Start date of the project: 1% of October, 2016

Duration: 24 months

Programme: H2020-S2RJU-0OC-2016-01-2

Deliverable type: Report

Deliverable reference number: ICT-730830/D3.2/1.1

Work package WP 3

Due date: Jul 2017 — M10

Actual submission date: 31" of July, 2017

Responsible organisation: Ikerlan SCL

Editor: Pedro Rodriguez

Dissemination level: Public

Revision: 1.1

Proposed a design of a Communication Emulator
which is part of a Simulation Framework to
Abstract: validate and test TCMS components. This
Simulation Framework will support SIL and HIL
connected via heterogeneous networks.

Simulation Framework, Communication Emulator,

Keywords: TCMS testing

Cl ShiftRail

*
i This project has received funding from the European Union’s Horizon

*
s il 2020 research and innovation programme under grant agreement No
* 730830.

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

L}

—
e e

Editor
Pedro Rodriguez (IKL)

Contributors (ordered according to beneficiary numbers)

Rafael Priego, Cristina Cruces, Ifaki Val (IKL)
Tobias Pieper, Maryam Pahlevan (SIE)

Mario Miinzer (TEC)

Tomas Tichy, Richard Pecl (UNI)

Moritz Pogrzeba (TUV)

Youlian Kirov (IAV)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The content of this document reflects
only the author’s view — the Joint Undertaking is not responsible for any use that may be
made of the information it contains. The users use the information at their sole risk and

liability.

Safe4RAIL D3.2

Page Il

D3.2 — Report on Design of TCMS Distributed L
Simulation Framework Concept m‘.._‘_..l.'m

Executive Summary

In order to advance the development of the railway industry, the integration and testing of
new railway components are crucial. This process can be radically improved by using a
distributed simulation and validation framework. This framework is the objective for two
European research projects: CONNECTA and Safe4RAIL.

The proposed distributed simulation and validation framework will support Software- and
Hardware-In-The-Loop (SIL/HIL) testing, as well as the secure coupling of simulators and
physical systems via heterogeneous communication networks. This framework is a network-
centric simulator that allows co-simulating End Device (ED) models with network models to
gain insight into the functionality, timing, reliability and safety of the Train Control and
Monitoring System (TCMS) from a network point of view. The framework ensures the
validations of TCMS by means of automation and fault injection tests. This framework will be
composed by a Simulation Framework (SF), in charge of electromechanical and functional
simulation, and a Communication Emulator (CE), in charge of providing communication
among all the different devices in the TCMS. The aforementioned projects will be in charge
of developing the whole system: CONNECTA focuses on the SF and Safe4RAIL on the CE.

This deliverable focuses on the description of the different use cases that defines the correct
interaction of the CE with its users and test tools. On the other hand, the deliverable defines
the correct behaviours and interactions of the actors, entities and subsystems that compose
the CE. This definition is based on a series of architecture models, scope models and
dynamic models. Finally, a series of sequence diagrams are presented which define the
communication and interactions between the different subsystems for each of the use cases.

Safe4RAIL D3.2 Page Il

D3.2 — Report on Design of TCMS Distributed I'I

Simulation Framework Concept =20 B =" s
Contents
LiST Of FIQUIES ittt e e W
LISt OF TADIES oottt IX
(@3 gF=T o1 =7 00 R 1 01 4 o Yo LU [o} 4 o] o S 1
Chapter 2 REQUITEMENTSuiiiiiiiiiiiiiiiiiiiiiiiiiiiieie bbb eeeenaenene 2
Chapter 3 USE CaSES ..o iiiiieiiiiii ittt e e e e e e et e e e e e e e e e eeennnnnnes 3
Use €ase 1: CONfIQUIATION.......cooeeiiiiiiiiee et e e e e e ee e e e e e e eeeeane 4
3.1.1 Scenario 1: Configuration when only one CETS attempts to be the CETSaster -+ 4
3.1.2 Scenario 2: Configuration when a second CETS attempts to be the CETSaster - 5
3.1.3 Scenario 3: Configuration with an incorrect configuration filecccccccvnnnnnne 5
Use Case 2: ReCONfIQUIALIONuuiiiiii i e e e e eaaaes 5
3.1.4 Scenario 1: Reconfiguration with a correct reconfiguration fileccccceveeee. 5
3.1.5 Scenario 2: Reconfiguration with an incorrect reconfiguration file........................... 6
Use Case 3: SFTS commands (Start, pause, step, resume, stop, fault_injection,
gaTe] al1re] T aTo =] (o PPN 6
3.1.6 Scenario 1: Transmission of SFTS COMMANS............cuvviiiiiieeiiiiiiiiiiiee e 6
Use Case 4: Ethernet iNteracCtioncooooevviieeiiiiiiie e e e e e eeeeees 6
3.1.7 Scenario 1: Transmission of Ethernet framecccooieiiii i, 6
Use Case 5: /O INLEIaCHiONoeeeeiiiiie e e e e e e e e et s e e e e e e e e eeeana e e e eeeeeeeanes 7
3.1.8 Scenario 1: transmission Of the 1/O ValUEuuuuiiiiiiiiiiiiiiiiiiiiiiieeees 7
Use Case 6: Monitoring/measurements Start.............ccoovvveiiiiiiiieeeeeeeeeiiee e eeeeenanns 7
3.1.9 Scenario 1: CETSaster Starts the monitoring/measurementsccceeeeeeeeeveeevinnnnnn. 7
3.1.10 Scenario 2: CETSgave Starts the monitoring/measurements..........ccccoeevvveeevennnnnn. 8
Use Case 7: Monitoring/measuremMent StOPieieeeeiiieiiiiiiee e ee e eeeeeeanns 8
3.1.11 Scenario 1: CETSaster StOps the monitoring/measurementscc.oceeevveevvnnnnn. 8
3.1.12 Scenario 2: CETSgave Stops the monitoring/measurements.........cccoooeevvvvveveennnnn. 8
Use Case 8: Configuration data reQUEST.............uuuuuruiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeiaeeeeaaeans 8
3.1.13 Scenario 1: Request the configuration data from the CEST;uuvvviiiiiinnnnns 9
Use Case 9: SIMUIAtioN STOP.....cocuuuiieiiiiie e e e e 9
3.1.14 Scenario 1: Stop the simulation from the CET Sy aster-«««-eeeeeeeerermmmameeeeemeeeeennnnns 9
Use Case 10: Fault iNJECHION SEAIcuuiiiiiiiii e 9
3.1.15 Scenario 1: CETSaster Starts the fault injectionccooovieiiiiiiiii e, 9
3.1.16 Scenario 2: CETSgjave Starts the fault iINjectioncccooevviii i, 10
Use Case 11: Fault iNJECHION STOP ..vuuieiieriiieeeiiiii et e e et e e e e e e eens 10

Safe4RAIL D3.2 Page IV

D3.2 — Report on Design of TCMS Distributed I'I

Simulation Framework Concept e 1 S le——
3.1.17 Scenario 1: CETSyaster StOps injecting a fault...........cccccooeeeiii i, 10
3.1.18 Scenario 2: CETSgave Stops injecting afault...........cccoceeeiiiiiiiiiiiii e, 10

Chapter 4 SCOPE MOAEI ... 11
4.1 ACTOIS.. it 11
.2 ENHHES .o 12

4.2.1 CO-SIMUIALION ENLILY. .. .uuuiiiiiiiiiiiieie bbb nnnnnnnne 12
4.2.1.1 The High Level ArChit@CIUIeccooiviiiiiie e 13
4.2.1.1.1 Overview about the HLA ... e 13
4.2.1.1.2 Timemanagementin the HLA ... 13
4.2.1.1.3 Co-simulation subsystem sequence diagrams..........cccvvrereeereiiiiiinereeee e ssreneeeeens 14
4.2.1.1.4 Time synchronization for SIL and HIL simulation..............cccceeiniiiieiniiiie e 17
4.2.1.1.5 The HLA FOM ..ottt e e e e e s e e aeeeae s 19
4.2.1.2 The Functional MocKUup INtErfacecoooeeiieieeieeeeeeeeeeeeeee e 20
4.2.2 NetWOrK SIMUIALOLooiiiiiiiiiiie e 21
4.2.3 COMMUNICALION SECUIILYevviiiiieiiiiiiiiie et e e e e e e e e e e e aeens 22
4.2.3.1 Establishing Secure TUNNEL..........cooo oo 23

Chapter 5 Architecture modeluuuiiiiiiiiiiiiii e 25

5.1 INEEITACES ...ttt 29
5.1.1 INterface SFTS — CETS ...oiiiiiiiiiiiiiiiiiiitetieeeieeeeeeaeeseesssesssssnssssseeseseseenesnessennennnnnnnnes 29
TN A [0 (=] £ £= (oS el S T O ey TR 30
5.1.3 INtErfact REAI ED — CER...uuiiiuiiiiiiiiie ettt e e e et e st e st esaaea e 30
5.1.4 Interface SF (SiM. TOOI) — CESp +tvrvrrrururruuuirunuinuniiununninunnnnsnnnnnnnnnnnnnnenennenneneennnnennne 30
5.2 Architectural requirements validationcoooeviiiiiii e 31

Chapter 6 DynamiC MOluuuuiiiiiiiiiiiiiiiiiiiiiii e 35

Chapter 7 SubSyStem MOdElccoooeeiiiiie e 37
7.1 User Interface SUDSYSIEM.......coiii i 37
7.2 Configurator Subsystem (Central)............ccccuuuuuiiiiiiiiiiiiiis 39

7.2.1 CONFIGUIALTION TIIE ...ttt 41
7.3 Configurator Subsystem (Master/SIave)cccccueueiiiiiiiiiiiiiiiiiiiens 49
7.4 Configuration SUDSYSIEMcoiii i e 52
7.5 Monitoring Subsystem (Simulation Bridge)cccccueieiiiiiiiiiiiiiiiiiiiiiiiiiinns 53
7.6 Monitoring Subsystem (Central)...........cooeieiiiiiiiiciiii e, 54
7.7 Monitoring Subsystem (MasSter/SIave)ueueeumiiiiiiiiiiiiiiiiiiiis 54
7.8 Communication Subsystem (Central)coeveiiiiiiii i, 55
7.9 Communication Subsystem (Master/Slave, Simulation Bridge) 58
7.20 Wrapper SUDSYSEIMuuuiiiiiiiie et e e e e e e e e eaaaas 60

7.10.1 Wrapper Subsystem for Simulation Tools with I/O as FMI variables.................. 60

7.10.2 Wrapper Subsystem for Simulation Tools with real 1/O...........cccccciiiiiiieiiiienes 61

Safe4RAIL D3.2 Page V

D3.2 — Report on Design of TCMS Distributed _I'I

Simulation Framework Concept e 1 S le——
7.10.3 Wrapper SUbsystem for HILuueiiiiiieeees e e e 62
7.10.4 Wrapper Subsystem for HIL With [/O ..., 63

7.11 Delay Manager SUDSYSIEIMccooviuiiiiiiiieie e e e e e eeaaans 64
7.11.1 Delay-Management CONCEPLouuuuuiiiieeeeeeeitiiee e e e e e e e e ettee e e e e e e e eeartaa s e e e aeaeaanne 64
7.11.2 Delay-Management MOUEuuiiiiiiiiiiiee e e e e aanees 65
7.11.3 State-Estimation FUNCHONAIILYuuuuieuiiiiiiiiiiiiiiiiiiiiiieiiie e 67

7.12 Fault injection SUDSYSIEMuuiiiiiiiiiiiii 69

7.13 Co-Simulation SUDSYSIEMccoiiiiiiiiice e e 70

7.14 Network Simulator SUDSYSTEIMuuiiuiiiiiiiiiiiiiiiiiiiiiieieeaees 76

Chapter 8 Instantiation of the SyStemcccoooviiiiiiiiiiii e, 81
Chapter 9 Summary and CONCIUSIONS........ciiiiiiiiiiicc e, 84
Chapter 10 List of Abbreviations ... 85
Chapter 11 BiblOgraphy.....oovviiiiiiiiiiiiiiei 87
Chapter 12 Appendix 1: Sequence diagramseeeeeeeemmmmmmmmmmmmmnnnnnnnennn. 89

Safe4RAIL D3.2 Page VI

D3.2 — Report on Design of TCMS Distributed L
Simulation Framework Concept m‘.._‘_..l.'m

List of Figures

Figure 1. Scope model of the co-simulation framework.cccccuuveiiiiiiiiiiiiiiis 11
Figure 2. HLA Synchronization POINTSueueeeeeeeriieiiieeiiiiieeseneesssesseennsseeennsssneenseneeneeenneee 15
Figure 3. HLA synchronize BENaVIOUTccoii oo 16
Figure 4. HLA tiMe MaNaQEMIENTuuuiutiiteniiitiitiieieeeteeaaeeseseseaeeesssssesssessssessessssnessnnnsssennnnene 17
Figure 5: Synchronization steps: a) scheduled tasks of end device, b) HLA services and

SYNCNIONIZALION SLEPS . .iieeiiiiie e e et e e e e e ettt e e e e e e e e ettt e e e e e e e eeaneaaaans 18
Figure 6. Establishing Secure Tunnel between RTI and Federatecccccceeevieeeniiiiiiinnnnn. 24
Figure 7. Architecture model of the co-simulation framework....................eviiiiiiiiiiiiiiiiiininn. 26
Figure 8. Architecture model of Central PC ... 27
Figure 9. Architecture model of Communication Emulator Toolset............ccccceeeeiiieiiiiiiiinnnnnn. 28
Figure 10. Architecture model of Communication’s Emulator Simulation Bridge................... 29
Figure 11. LC replaced by RC USING CEuuuuiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiieeennsseeseessenneneeeennennnneee 31
Figure 12. CE handles MUItiple LCN.........ouiiiii et 32
Figure 13. CETS handles MmUltiple CEcoo i 32
Figure 14. Only 0N CETS PEI CE.....uiiiiiiiiiiiiiiiiiiiiiiiiiitiieeiieiieseee e seeeesssnesebeeeasnennnnne 33
Figure 15. SIM handles multiple EDSuu oot 33
Figure 16. EDS distribUtable.........coooooiiiiiee e e 33
Figure 17. SFTS and SIM CONNECTIONuuuuiiiiiiiiiiitiiiieiiiiieiiiieeeebebebeeeeeeeeseeseeseeeesebeeeneeennneee 33
Figure 18. CE integrated iNtO SIMuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiseneeeeeeeeeeeeesaeeeeeeennseeneesneeneneee 33
Figure 19. Dynamic model of the Communication Emulator (CE).ccccoveeeiiieeeiiiiiiinnnnn. 36
Figure 20. Dynamic model of the User Interface Subsystem.vveviiiiiiiiiiiiiiiiininnnnns 38
Figure 21. Dynamic model of the Configurator (Central) Subsystem.cccccccvvviiiiinnnnns 40
Figure 22. Dynamic model of the Configurator (Master/Slave) Subsystem.cccvvvveen. 51
Figure 23. Dynamic model of the Configuration Subsystem.cccoiiiiiiin e, 52
Figure 24. Dynamic model of the Monitoring (Simulation Bridge) Subsystem. 53
Figure 25. Dynamic model of the Monitoring (Central) Subsystem.cccccceeeiiieiiiiiiiiinnnnn. 54
Figure 26. Dynamic model of the Monitoring (Master/Slave) Subsystem.ccccevvvvvvnnnnn. 55
Figure 27. Dynamic model of the Communication (Central) Subsystem.cccccvvvunnnnns 57
Figure 28. Dynamic model of the Communication (Master/Slave, Simulation Bridge)

ST 0] 015321 (=] o PSSP 59
Figure 29. Dynamic model of the Wrapper Subsystem for Simulation Tools. 61
Figure 30. Dynamic model of the Wrapper Subsystem for Simulation Tools with 1/O 62
Figure 31. Dynamic model of the Wrapper Subsystem for HIL.ccccooiiiiiiniiiinin. 63
Figure 32. Dynamic model of the Wrapper Subsystem for HIL with I/O.cinnnnn. 64
Figure 33. Dynamic model of the Delay Manager SUDSYStEM..............uuvuvmiiiiiiiiiiiiiiiiiiiiiiannns 67

Safe4RAIL D3.2 Page VI

D3.2 — Report on Design of TCMS Distributed I'I

Simulation Framework Concept =20 B =" s
Figure 34. Dynamic model of the State-Emulator Functionality...............cccccevveieiiieeiriiiiiinnnnn. 69
Figure 35. Dynamic model of the Fault injection Subsystem..........ccccooovviiiiiiiiiin e, 70
Figure 36. Dynamic model of the Co-simulation SubSystem.uuvviiiiiiiiiiiiiiiiiiiiiiiies 71
Figure 37. Dynamic model of the Connect and init State...................uuveemiiiiiiiiiiiiiiiis 72
Figure 38. Dynamic model of the Registration stateccoovviiiiiiiieeiiicee e, 73
Figure 39. Dynamic model of the Configured and running State.cccccvvvmiiimmiiniennnnnnns 74
Figure 40. Dynamic model of the Reconfiguration State..................uuvuvmiiiiiiiiiiiiiiiiiiiiiiiiees 75
Figure 41. Dynamic model of the DiSCONNECt State.cccceeeviiiiiiiiiiiiie e, 76
Figure 42 Dynamic model of the Network Simulator Subsystem.............cccccovveieiiiieniiiiiinnn. 78
Figure 43 Dynamic model of the Switch machine state...............ccccoviiiiiiiiiiiiiiiiie 79
Figure 44. Sample scenario for instantiation of the system..........ccccooooiiiiiiii e, 81
Figure 45. Sample instantiation of the SYStEM.cuiiiiii e 82
Figure 46. Sample instantiation of the system with simulated network.................cccccvviinnnis 82
Figure 47. USE CASE 1. SCENANO L......uuuuuiuiuuiiuiiiiiininiiiieiieeeeaeseassasesssessnessssaesasssensssensenssnnnnnne 90
Figure 48. USe CaSE 1. SCENANO 2......ccoeviiiiiiiii e e e ettt e e e e e e e et e e e e e e e e aaneaaaaas 91
Figure 49. Use Case 1. SCENANO 3......ccooiuiiiiiiiii e eeeeeetiie e e e et e e e e e e e e e ettt e e e e e e e e eeneaaaaas 92

Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.

USE CASE 2. SCENANIO L..enenie ittt ettt e et et e e e e e e e e e e eneenaanns 93
USE CASE 2. SCENANIO 2. eeeeeeeee et ettt et et et e et e e e e e e e e e e e e e eeeennns 94

USE CASE 3. SCENAIIO L...coeeieeeeeeeee e 95
USE CASE 4. SCENAKIIO L...eeviiiiieiieeeei e e e e et ettea s s e e e e e e et a s e e e e e e e eanaannneeeeaes 96
USE CASE 5. SCENAKIIO L...eeviiiiieiieeiei et e ettt tee s s e e e e et a s s e e e e e e eeanaann e e aeees 97
(O o o L I (o =T o = 1 o I U 98
USE CASE 6. SCENAKIIO 2....euieuneiieeeeeieeiiiiea e e e e e ettt aa s s e e e e e e e eaeteaaa s e e aeaeaeaneenaaaaaeaes 99
USE CASE 7. SCENAKIIO L..covriiiiiiieeeeiieeiiiee e e e ettee s e e e e e e e ettt aa s e e e e e e e eaeataaeeaeaes 100
USE CASE 7. SCENAIIO 2. .o ee oo 101
USE CaSE 8. SCENAIIO L....ccoeeeeeeeeeeeeeee e 102
USE CASE 9. SCENAKIIO L...ovviiiiiieeeei it e et s e e e e e et s s e e e e e e e eaeataa e e aeaes 103
Use case 10. SCENAMIO L.....cccooeeieeeee e 104
Use CaSe 10. SCENAIIO 2...ccceeeeeee oo 105
USE CASE 11. SCENAIIO L..oviiuiiieeeiiieeiiiiee et e et e e e e e e e e eeees 106

USE CASE 11. SCENAIIO 2. . et enaens 107

Safe4RAIL D3.2 Page VI

D3.2 — Report on Design of TCMS Distributed L
Simulation Framework Concept m‘\‘l:m

List of Tables

Table 1: FMI variables for communication between CE and EDccoovviiiiiiiieiieeneecenens 21
Table 2. Commands of the interface SFTS — CETS. ..o e 30
Table 3: Interface for the State-Estimation functionalityccccccovviieiiii i, 68
Table 4: List of ADDIeVIAtIONSuuuiiiiieeii e e e e e et e e e e e e e eeeenes 86

Safe4RAIL D3.2 Page IX

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

Chapter 1 Introduction

In order to test the new technologies and architectural concepts presented by the Safe4RAIL
project, a distributed simulation and validation framework is necessary. This framework is
composed of a Simulation Framework (SF) in charge of electromechanical and functional
simulation, and a Communication Emulator (CE) in charge of providing communication
among all the different devices in the Train Control and Monitoring System (TCMS). In this
document, a high level design for the CE is presented.

The main objective is to develop a CE that provides a safe communication among the
different devices in the TCMS network. This CE allows simulated and physical devices (End
Device (ED), Vehicle Control Unit (VCU), Human Machine Interface (HMI), among others) to
be connected via heterogeneous networks.

This deliverable focuses on the description of the entities, actors, subsystems and
functionalities of the CE. The structure of this deliverable is organized as follows:

e Chapter 2 gives an overview of the different functional and non-functional
requirements the CE needs to provide in order to allow the validation and simulation
of a TCMS.

e Chapter 3 is composed of a series of Use Cases that define and guide the
interactions the different users or actors will experience when using the CE.

o Chapter 4 provides a depiction of the different actors and entities that composes the
TCMS, focusing on the part of the software that is under design and its connection to
other components of the system.

e Chapter 5 presents the architecture model that represents the different elements,
interfaces and information used by the CE to ensure the communication, monitoring
and management of the system.

e Chapter 6 focuses on the behaviour of the CE and how it reacts to stimulus coming
from the user or other systems.

o Chapter 7 deals with the description of the sub-systems that composes the different
elements of the CE.

o Chapter 8 presents a sample instantiation of the designed CE for a sample TCMS
network.

e Chapter 9 provides a summary of the document.

SAFE4RAIL D3.2 Page 1 of 107

D3.2 — Report on Design of TCMS Distributed ==t

Simulation Framework Concept ——————— e

Chapter 2 Requirements

In order to ensure the correct behaviour and interactions of the CE, a series of functional and
non-functional requirements have been proposed. These requirements have been collected
as part of Safe4RAIL’s deliverable D3.6 [1]. This deliverable distributes the requirements into
different groups that deal with specific characteristics of the CE:

Distributed Co-Simulation Requirements
Software-In-The-Loop Requirements
Hardware-In-The-Loop Requirements

Test Operation and Test Automation Requirements
Applicability Requirements

Configuration Requirements

Security Requirements

Additional architectural requirements have been provided by the CONNECTA project
regarding the connection and interaction between the ED and the simulation framework.
These requirements are collected in [2].

SAFE4RAIL D3.2 Page 2 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

Chapter 3 Use Cases

The Use Case model is a catalogue of repeatable interactions or steps that a user (or “actor”
in the Unified Modelling Language (UML)) experiences when using the system. A Use Case
includes one or more “scenarios”, and each scenario describes the interactions that go on
between the actor and the system. Results and exceptions that occur from the user’s
perspective are documented.

First of all, some parts of the system which will be referenced in the use case models are
going to be detailed and explained:

e Simulation Framework (SF): The SF is the system which is in charge of simulating the
functional and electromechanical devices. This system is designed by CONNECTA.

e Simulation Framework Tool Set (SFTS): The SFTS is the system which is in charge
of controlling the SF, and it is also designed by CONNECTA.

¢ Communication Emulator (CE): The CE is the system which connects all the devices
of the simulation, as well as the Tool Set in charge of commanding them. It is
composed by a CE controller (CE.) and one or several Simulation Bridges (CEsg);
both of them are explained below:

o Communication Emulator Controller (CE.): The CE. coordinates the
simulation; it coordinates how the different CEsg exchange information.

o Communication Emulator, Simulation Bridge (CEsg): The CEgg is in charge of
connecting the different devices in the network to build the TCMS network
through a heterogeneous network.

e Communication Emulator Tool Set (CETS): The CETS is the system which is in
charge of configuring, monitoring and controlling the CE. It is composed by a master
CETS (CETSnaster), a central CETS (CETS,), and a slave CETS (CETSgave), Which
are explained bellow:

o Communication Emulator Tool Set, Master (CETSaster): The CET Spaster Will be
responsible for configuring and starting the CE; it will send a file to the CE.
including all the configuration data. It receives commands for configuration
and monitoring from an external user and sends it to the CE..

o Central Communication Emulator Tool Set (CETS.): The CETS. will
coordinate the configuration, control and monitoring of the CETS. It receives
the commands for configuration and monitoring from the CETSpaster, and
routes them to their destination, the different CEsg in the simulation.

o Communication Emulator Tool Set, Slave (CETSgawe): A CETSgave allows
configuring, controlling and monitoring some CEsgg locally. A CETSgave Should
tell the CETS, which CEsg is going to control, and the CETS, coordinates this
to not allow more than one CETS (master or slave) to control the same CEgg

e Network simulator: a simulator to simulate the switches of the TCMS when no real
switches are present in the test.

The list of Use Cases which have been defined for the CE is:
e Configuration
e Reconfiguration

e SFTS command (Start, pause, step, resume, stop, fault-injection, monitoring, etc.)

SAFE4RAIL D3.2 Page 3 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept -

————
T

e Ethernet interaction

e |/O interaction

¢ Monitoring/measurement start
¢ Monitoring/measurement stop
e Configuration file request

e Stop

¢ Fault injection start

e Fault injection stop

All of them, and their different scenarios, are explained below.

Use case 1: Configuration

Goal: The CETSnaster Must open the Virtual Private Network (VPN) to secure the
communication with the CETS, and send the configuration file. The necessary information is
related to:

- Identification number and IP address of each CEsgg.

- ldentification number and IP address of each CETSgae in the simulation.

- Identification number of all the CEgg controlled by each CETSgjave.

- Configuration of the co-simulation tool.

- Establish if the network devices (switches) should be simulated or real network
devices are connected to the SF. If they should be simulated, configure them (get the
info to inaugurate the network, etc.).

3.1.1 Scenario 1: Configuration when only one CETS
attempts to be the CETSnmaster

Precondition: the CE. is running the VPN server and the PCs containing the CEggs and
CETSgaes of the simulation are switched on and have their corresponding programs
executing. No CETSaser has been established and the configuration file is correct.

Steps:

1. The CETS receives a configuration command and the configuration file from a SFTS
or a User.

2. A CETS opens a VPN connection and a socket with the CETS.. This CETS is
established as the CET S aster-

3. The CETSnaster SENAS the configuration file to the CETS,,

4. The CETS. analyses the configuration file, configures the CE: and the network
simulator, and starts them.

5. The CETS; opens a VPN and a socket with each and every CEsg and CETSgave

(specified by the configuration file) in the network.

The CETS, asks all the CETSgjaveS Which CEsgs they are going to control.

Each CETSgave Sends to the CETS, which CEsgs they are going to control.

The CETS, tells to the CETSnaster Which CEgsgs are not controlled by a CET Sgpave (they

will be controlled by the CETSpaster)y @and any possible problem regarding the

CETSsIaves

9. Each CETSgave cOnnects with the CEggs they must control.

10. All the CETSgjaveS send to the CEggs the configuration file and they are configured.

11. CEsggs initialize, connect and do the co-simulation registration.

12. Each and every CEgsg confirms to the CETS, that everything works correctly.

© N

SAFE4RAIL D3.2 Page 4 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

13. The CETS, goes to a started state and reports it to the CET Sy aster-
14. END.

3.1.2 Scenario 2: Configuration when a second CETS
attempts to be the CETSmaster

Precondition: the CE; is running, the VPN server and the PCs containing the CEggs and
CETSgaes of the simulation are switched on and have their corresponding programs
executing. Another CETS,.ster has been already established.

Steps:

1. The CETS receives a configuration command and the configuration file from a SFTS
or a User.

2. A CETS opens a VPN connection and a socket with the CETS,, and sends the
configuration file.

3. The CETS.reports that other CETS has been established as the CET S aster-

4. END.

3.1.3 Scenario 3: Configuration with an incorrect
configuration file

Precondition: the CEc is running the VPN server and the PCs containing the CEsgs and
CETSgawes of the simulation are switched on and have their corresponding programs
executing. No CETSaster has been established but the configuration file is not correct.

Steps:

1. The CETS receives a configuration command and the configuration file from a SFTS
or a User.

A CETS opens a VPN connection and a socket with the CETS., and sends the
configuration file. This CETS is established as the CETSpaster-

The CETSaster SENdS the configuration file to the CETS..

The CETS, analyses the configuration file and detects some mistakes in it.

The CETS, reports to the CETS,aster that the file is not correct.

END.

N

ook w

Use Case 2: Reconfiguration

Goal: reconfigure the system, maintaining the same network structure as in the previous test.

3.14 Scenario 1. Reconfiguration with a correct
reconfiguration file

Precondition: the system has been configured and the reconfiguration file is correct.

Steps:

1. The CETS receives a reconfigure command and the configuration file from a SFTS or
a User.

2. The CETSnhaster S€NAS the reconfigure command and the reconfiguration file to the
CETS..

SAFE4RAIL D3.2 Page 5 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept =201 O et =

The CETS, analyses the reconfiguration file.

The reconfiguration data is sent to the CEsgs and the CETSgayeS.

The CETS, asks all the CETSgaveS Which CEggs they are going to control.

Each CETSgave Sends to the CETS, which CEggs they are going to control.

The CETS, tells to the CETSnaster Which CEsgs are not controlled by a specific
CETSgave (they will be controlled by the CETShaser), and any possible problem
regarding the CET SgaveS.

8. Each CETSg.e connects to the CEggS it must control.

9. CEsgs do the registration.

10. CEsgs confirm everything works correctly through the socket.

11. The CETS, reports to the CETSnaster that the reconfiguration has been done.

12. END.

Nooh~w

3.1.5 Scenario 2: Reconfiguration with an incorrect
reconfiguration file

Precondition: the system is running and the reconfiguration file is not correct.

Steps:

1. The CETS receives a reconfigure command and the configuration file from a SFTS or
a User.

2. The CETSnaster S€NAS the reconfigure command and the reconfiguration file to the
CETS..

3. The CETS, analyses the reconfiguration file and detects it is not correct.

4. The CETS, reports to the CETSaster that the file is not correct.

Use Case 3: SFTS commands (Start, pause, step, resume, stop,
fault_injection, monitoring etc.)

Goal: the SFTS sends a command which the CE shall pass on to the EDs.

3.1.6 Scenario 1: Transmission of SFTS commands

Precondition: the CE has been configured.

Steps:

The command is sent from the SFTS.

The CEgg takes the command and translates it to a co-simulation interaction.
The interaction is sent to the CEggs of the destination EDs.

The interaction is translated into the original command and it is sent to the EDs.
END.

ahrwbpE

Use Case 4: Ethernet interaction

Goal: an ED sends an Ethernet frame which the CE shall pass on to the destination EDs.

3.1.7 Scenario 1: Transmission of the Ethernet frame

SAFE4RAIL D3.2 Page 6 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept =201 O et =

Precondition: the CE has been configured.

Steps:

1. The ED sends the Ethernet frame.

2. The CEgg takes the Ethernet frame and translates it into a co-simulation interaction.

3. The co-simulation interaction is sent to the CEggs of the destination EDs.

4. The interaction is translated into the original Ethernet frame and it is sent to the
destination EDs.

5. END.

Use Case 5: I/O interaction

Goal: an ED changes the value of its I/O which the CE shall pass on to the destination EDs.

3.1.8 Scenario 1: transmission of the I/O value

Precondition: the CE has been configured and a change has been detected in the 1/O.

Steps:

1. The CEsg obtains a sample from the /O and translates it into a co-simulation
interaction.

2. The co-simulation interaction is sent to the CEgg of the destination ED.

3. The interaction is translated to the 1/O.

4. END.

Use Case 6: Monitoring/measurements start

Goal: start the monitoring or measuring of all signals/messages in a CEgg.

3.1.9 Scenario 1: CETSaster starts the
monitoring/measurements

Precondition: the CE has been configured and the CETSpaser SENAS the monitoring_start
command indicating the CEgg which shall start the monitoring/measurements.

Steps:

1. The CETS receives a monitoring_start command from a SFTS or a User.

2. The CETSnaster Sends the monitoring_start command to the CETS, indicating the
CEsg which shall start the monitoring/measurement process.

3. The CETS, sends the command to the desired CEgg.

4. The CEsg starts monitoring or measuring data. The data is sent to the CETS s if the
CEgg was told to monitor it, or it is saved in a file and sent to the CETS.ser at the end
of the simulation if it was told to measuring it. The data and files are sent from the
CEsg to the CETShaster DY routing them through the CETS..

5. END.

SAFE4RAIL D3.2 Page 7 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept =201 O et =

3.1.10 Scenario 2: CETSsjave starts the
monitoring/measurements

Precondition: the CE, the CETSaster and all the CETSgae have been properly configured,
and one CETSgve Sends the monitoring_start to a CEsgg.

Steps:

1. The CETS receives a monitoring_start command from a SFTS or a User.

2. The CETSgave Sends the monitoring_start command to the CEgg.

3. The CEsgg starts monitoring or measuring data. The data is sent to the CETS if the
CEgg was told to monitor it, or it is saved in a file and sent to the CETSg... at the end
of the simulation if it was told to measuring it.

4. END.

Use Case 7: Monitoring/measurement stop

Goal: stop the monitoring or measuring in a CEsg.

3.1.11 Scenario 1: CETSmaster stops the
monitoring/measurements

Precondition: the CE has been configured, the CETSnaser S€Nds the monitoring_stop
command indicating the CEgsg which shall stop the monitoring/measurements and this CEgg is
monitoring/measuring.

Steps:

1. The CETS receives a monitoring_stop command from a SFTS or a User.

2. The CETSnaster Sends the monitoring_stop command to the CETS, indicating the
CEsg which shall stop the monitoring/measurement process.

3. The CETS. sends the command to the desired CEsgg.

4. The CEsg stops monitoring or measuring data.

5. END.

3.1.12 Scenario 2: CETSslave stops the
monitoring/measurements

Precondition: the CE has been configured, the CETSga. Sends the monitoring_stop to the
CEsg which shall stop the monitoring/measurements and this CEsg is monitoring/measuring.

Steps:

1. The CETS receives a monitoring_stop command from a SFTS or a User.
2. The CETSgave Sends the monitoring_stop command to the CEsg.

3. The CEgsg stops monitoring or measuring data.

4. END.

Use Case 8: Configuration data request

Goal: request for the configuration file and receive it.

SAFE4RAIL D3.2 Page 8 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept =201 O et =

3.1.13 Scenario 1: Request the configuration data from the
CETS,

Precondition: the CE has been configured and CETSpaster Of CETSgae Sends the
config_request command to the CETS..

Steps:

1. The CETS receives a config_request command from a SFTS or a User.

2. The CETSnaster OF the CETSgve Sends the config_request command to the CETS..
3. The CETS.sends the configuration file to the CETSaster OF the CETSgjave.

4. END.

Use Case 9: Simulation stop

Goal: stop the simulation.

3.1.14 Scenario 1: Stop the simulation from the CETSaster

Precondition: the CE has been configured and it is running.

Steps:

1. The CETS receives a stop command from a SFTS or a User.

2. The CETSnaster S€ENs the stop command to the CETS..

3. The CETS. sends the stop command to every CEggs in the simulation.

4. Every CEsg disconnects the co-simulation execution.

5. Every CEsg which has saved measured data into a file sends it to the CETSgave
through the socket. If the CEgg is controlled by the CETS;aser, the data is sent
through the CETS..

Every CEgg confirms that the stop has been done to the CETS..

The CETS, confirms that the stop has been done to the CETS.ser and all the
CE-I—Sslave-

8. All sockets are closed.

9. The VPN is closed.

No

Use Case 10: Fault injection start

Goal: start the introduction of faults into de communication of a CEsg. These faults refer to
the introduction of a communication delay or message jamming.

3.1.15 Scenario 1: CETSnaster Starts the fault injection

Precondition: the CE has been configured.
Steps:

1. The CETS receives a fault_injection command from a SFTS or a User.

2. The CETSnaster S€Nds the fault_injection command to the CETS. indicating the CEgsg
which shall start the fault injection process and the fault to be injected.

3. The CETS, sends the command to the desired CEgg.

4. The CEgg starts introducing the fault into the communication.

5. END.

SAFE4RAIL D3.2 Page 9 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept -

————
T

3.1.16 Scenario 2: CETSgave Starts the fault injection

Precondition: the CE has been configured.

Steps:

1. The CETS receives a fault_injection command from a SFTS or a User.
2. The CETSgave Sends the fault_injection command to the CEsg indicating the fault to be

injected.
3. The CEsgg starts introducing the fault into the communication.
4. END.

Use Case 11: Fault injection stop

Goal: stop injecting of a specific fault in a CEgg.
3.1.17 Scenario 1: CETSnaster StOps injecting a fault

Precondition: the CE has been configured and this CEgg is injecting a fault.

Steps:

1. The CETS receives a fault_reset command from a SFTS or a User.

2. The CETShaser Sends the fault_reset command to the CETS, indicating the CEsg
which shall stop the fault injection process and the fault to be stopped.

3. The CETS. sends the command to the desired CEsgg.

4. The CEgg stops injecting the fault.

5. END.

3.1.18 Scenario 2: CETSsjave Stops injecting a fault

Precondition: the CE has been configured and this CEgg is injecting a fault.

Steps:

1. The CETS receives a fault_reset command from a SFTS or a User.

2. The CETSgae Sends the fault reset command to the CEgsg and the fault to be
stopped.

3. The CEsg stops injecting the fault.

4. END.

SAFE4RAIL D3.2 Page 10 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept =201 O et =

Chapter 4 Scope Model

The scope model represents the part of the software which is under design, and its
relationship with the rest of the components of the system. The goal of this model is to
represent the boundary of the system which has to be designed, being left outside the rest of
the components (actors). Usually, the system to be designed uses libraries, which are also
represented within the boundary (entities). Therefore, a scope model should define:

e Users (actors) of the system which interact with the system.

e The devices (entities) contained within the system, and libraries which are used by
the system.

e The inter-relationship between these devices and the software itself.
e All messaging between the software and the devices.

The scope model of the designed system (the CE) is shown in Figure 1. The part of the
software we are going to develop is represented within a rounded square meanwhile the rest
of the existing system components are represented with square boxes. As the system
emulates the communication between train components, these components are the actors.
Furthermore, additional actors such as an external user or the SFTS are considered. All
these actors are delved below.

custom Scope Model diagram
-———=
I <<---- Bl
| |
| User | r ****** O — — — — —— >
| |
(from | — Ethemet frames— — — =>
| |
| Actors) | Lo Real ED, VCU, HMI, /0
| | | | Boards
| | : ! (from
: : System Boundary | 1 Actors)
| I [
| [X | X System (<o ———————————r I
| Monitorization, Configuration, Simulation commands _ _ ~ =]
|
| M!om!onzauon, Configuration, Simulation commands__ > 5t p b 0= ———->=>
= | <--—-—-—-r-—- — ‘Ethemet frames— — =
| r— — —Ethemet frames —|— —— — —— —— ——— => <****************j SWED, VCU, HMI, I/0
|l << - E— Boards
. . |
Slmu\atl‘&;golli‘;:{nework - | //7 A ‘\\ : : (from
I Callg/Callbacks to the ! Calls/Callbacks to the o Actors)
(from I network imulator ! cosimulation entity [
Actors) | ;7 callsCallbacksto the N o
: / communication \ ! :
/ security |
| \
| y V N S o ————-=>
|
| Netw ork Communication Co-simulation . Ethemet frames — — —>
| Simulation Tool Security Entity Entity
| Entity Real TCMS
| (from
: Actors)
|
|
|
,,,,,, J
Internet/LAN
(from
Actors)
Figure 1. Scope model of the co-simulation framework.

Actors are the users of the system, which will have a well-defined role and have useful
interactions with the systems. As stated before, in the CE case, the actors are devices which

SAFE4RAIL D3.2 Page 11 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

are present in railway networks, such as EDs and the TCMS network. Furthermore, an
external user, the SFTS and the internet or LAN to achieve distributed simulations are also
considered. These actors are explained in more details below:

e User: An external user may be capable of connecting to the co-simulation framework
to carry out monitoring, configuration tasks or to command the simulation (start/stop
the simulation, etc.). The simulation state will be reported to the user.

e Simulation Framework Toolset (SFTS): Framework used to command the functional
simulation. The SFTS will carry out monitoring, configuration and simulation
commanding tasks. It also receives information about the functional simulation state.

o Real End Device (ED), Vehicle Control Unit (VCU), Human Machine Interface (HMI),
I/O Boards: a real ED, VCU, HMI or I/O boards can be connected to the simulation
framework for testing purposes. VCU, HMI or I/O boards are parts of the TCMS
network. A VCU is required so as to carry out control and monitoring functions in the
TCMS, and HMIs and/or 1/0O boards may be used in order to validate an ED or for
training purposes. Finally, any real ED such as doors controller can be evaluated
using the CE, it may be connected to the SF using internet or a LAN which allows a
remote validation of the device.

e SW ED, VCU, HMI, I/O Boards: the ED under test, the VCU, the HMI or the 1/0 Board
may be implemented in software and executed in a PC which is connected to the
CEsg using the Ethernet or I/O. In this case, it is possible to command the execution
of the software by the SFTS. Some commands such as start and stop may be
available in the SFTS.

e Real network devices (switches): real network devices connected to the CE. A real or
SW ED will be virtually connected to this network device by using the CE. The ED will
be connected to a Consist Switch (CS) of the network according to the IEC 61375-3-
4. The standard also allows an ED to be connected to a Train Backbone Node (TBN),
but this option is not considered in the design because it is not widely implemented by
train builders.

e Internet/LAN: CE may be connected to the simulation framework through the Internet
or LAN. This allows testing an ED connected to the same LAN or located in a
different place than the CEsgg.

All these actors exchange information with the designed system by Ethernet frames, which
are sent/received using a heterogeneous network such as the Internet or a LAN. Inside these
Ethernet frames the data of the different messages of every actor will be encapsulated. For
example, test messages will be sent by the SFTS or railway protocols data by EDs.

4.2 Entities

The entities are the libraries which the system should use to carry out their objective. In the
CE three entities will be used: a network simulator to simulate the TCMS network in case a
real one is not connected to the CE, a co-simulation entity to exchange information between
simulators and/or real devices and to synchronize them and a communication security entity
to encrypt the information exchanged via the Internet.

4.2.1 Co-simulation entity

There are already several frameworks for co-simulation presented in section 4.4 of
deliverable D3.1 [3] which provide mechanisms for synchronization and data exchange over
the Internet. However, they are all designed for specific simulation tools without any generic
interface or compatibility to existing standards. These are only two of the main
disadvantages. In the following, the usage of the High Level Architecture (HLA) and the

SAFE4RAIL D3.2 Page 12 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

Functional Mockup Interface (FMI) are discussed. Both overcome the lacks of adaptability
and interoperability of different simulation tools.

4.2.1.1 The High Level Architecture

The HLA standard was initially developed by the U.S. Modeling and Simulation Coordination
Office [4] and connects a set of individual components over a network. These components
are called federates and may be computer simulations, supporting utilities or interfaces to
live partitions [5].

4.2.1.1.1 Overview about the HLA

Designed at a level independent of any languages and platforms, the HLA supports solutions
to the most common problems of interoperability. The only requirements are capabilities for
the interconnection with other federates by the exchange of data. Otherwise, there are no
constraints on what is represented or how [4]. In addition to interoperability, the HLA was
designed for the reuse of components. Each federate must document its object model using
a standard Object Model Template (OMT) which is intended for information sharing to
facilitate the reuse [5].

Data exchange in the HLA is realized based on services. They are implemented in the
Runtime Infrastructure (RTI) as the central component which acts as a distributed operating
system. The services are categorized into different types such as data exchange, federation
management, declaration management as well as time management and they can be
accessed using a standardized interface [4]. Federation management includes the
creation/deletion of federation executions and enables the federates to join or resign from
them. Furthermore, the execution can be paused, check-pointed or resumed. Declaration
management provides services to publish object attribute updates or interactions between
federates and to subscribe to them. The advancement of the logical time and its relationship
to wall-clock time during the execution is coordinated by the time management services.
These categories are only a subset of those defined in the standard. However, the remaining
services are not considered in this project [6].

Since the HLA was introduced, several implementations of free and commercial RTI
implementations have been developed. Examples for commercial implementations are the
MAK High Performance RTI or the Pitch pRTI. Although they provide promising capabilities,
they were not considered due to license costs unless there are no other opportunities. Free
and available alternatives are CERTI, the Portico Project or OpenRTI. On the one hand, the
selected RTI has to provide all required services. On the other hand, discontinued
implementations shall be avoided and it is beneficial if the source code can be adapted
during the development of the TCMS distributed co-simulation framework. Since the
OpenRTI is still in development, the source code is freely available and it provides all
required services such as the categories described above, it was selected for the proof-of-
concept implementation of the framework.

4.2.1.1.2 Time management in the HLA

In the HLA, time is modelled as points along the HLA time axis. Each joined federate can
associate itself with those points which then delineate the federate's logical time.
Furthermore, it can assign time-stamps to its activities represented as messages. During its
execution, the federate can advance along the time axis to a logical time which is greater
than or equal to its current logical time. The progress can either be unconstrained or
constrained by other federates and it is controlled by the time management services of the
HLA [7]. These services interact with the HLA's object management services to provide a
causally correct and ordered information delivery.

Messages in the HLA represent interactions between federates or attribute updates of
objects in the simulations. They can include a time-stamp which is used to order the
messages. To send a time-stamped message in a federation-wide time-stamped order
(TSO), a federate must be time-regulating while it has to be time-constrained to receive the

SAFE4RAIL D3.2 Page 13 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

message. The default state of a federate upon joining the federation execution is neither
time-regulating nor time-constrained and the federate must call the EnableTimeRegulation
and EnableTimeConstrained services first. If coordination with other federates is not
required, the newly joined federate can remain in the default state.

A time-regulating federate shall specify a non-negative value called lookahead when it
attempts to become time-regulating. The lookahead is a guarantee from the federate to the
federation that it will not send any TSO message during the time interval between the current
logical time and this time plus the lookahead. Hence, the RTI only grants time advances to a
logical time which does not violate this constrain

To provide a time-stamped ordered message delivery, the RTI must ensure that a time-
constrained federate will never receive a TSO message in its past. Hence, a bound called
Greatest Available Logical Time (GALT) is placed on those federates. It limits the advance in
the logical time to only those times, where it is guaranteed that no TSO message will be sent
to the federate. A request beyond the GALT is only granted, if the bound has increased
beyond the requested time. The GALT is calculated by the RTI based on the federates'
logical times, lookaheads and time advance requests. It increases during the execution when
the time-regulating federates advance in time. Since non-constrained federates can always
become time-constrained, the GALT is calculated for each federate. In this case, it
represents the bound which would be applied when the federate becomes time-constrained.

Each time advance must be requested explicitly using the TimeAdvanceRequest or
NextMessageRequest services. While the time advance services are used by time-stepped
federates, event-stepped ones use the next message requests. The first type grants time-
steps to the requested logical time. In contrast, the second type of services may also grant a
step to a logical time before the requested one. This enables the federate to react on
external events which are not known locally. By calling one of those services, the time-
regulating federate guarantees that it will not send any TSO message until the requested
time plus its lookahead. The RTI grants the time advance by responding with the
TimeAdvanceGrant callback which takes the granted logical time as parameter. Until the
response, the federate is not permitted to advance in time since the grant guarantees that
there will be no further message sent to the federate. While the time-regulating federates
must advance in time to enable progress in the time-constraint ones, also federates which
are not time-regulating can advance in time. However, these advances have no effect on
other federates unless the federate becomes time-regulating.

4.2.1.1.3 Co-simulation subsystem sequence diagrams

The following sequence diagrams denote the interactions which are exchanged between the
federates and the RTI to realize the following actions: (I) the registration and announcement
of synchronization points, (Il) the behaviour of the federates if those points are achieved and
(1N the interactions related to the time management services of the HLA.

SAFE4RAIL D3.2 Page 14 of 107

D3.2 — Report on Design of TCMS Distributed C

Simulation Framework Concept =dO C et
RTI Federate 0 Callback-Handler | | Federate 0 | | Federate 1 Federate 1 Callback-Handler
: wait for announcement
N Ll
Register SP evoke CB
wait for announcement é -
$ oL
SP registered
evoke CB
{5 ~~ 1 SP registered
evoke CB
SP announced é -
evoke CB
e~ 21 SP announced
wakeup evoke CB
L -~ 21 SP announced

wakeup

Figure 2. HLA synchronization points

Figure 2 shows the announcement of a synchronization point. While Federate 0 is
responsible to register the point, Federate 1 only waits for the announcement. On each
federate, a second thread is executed which acts as a callback-handler. The callbacks of the
OpenRTI implementation are non-blocking. Hence, the federate has to call the
evokeCallback function to check if a callback is available. One possible solution is busy
waiting which is not useful in case of HIL simulations since CPU resources are wasted. An
alternative is the usage of a second thread. The main thread is blocked and the callback-
handler periodically checks the availability of a callback. Between the calls of evokeCallback,
this thread is also blocked. If a callback is available, the handler wakes up the main thread
which can continue its execution.

In the beginning, Federate 1 has to wait for the announcement of a synchronization point.
Hence it passes the control to the callback-handler which is returned as soon as the
synchronizationPointAnnounced callback is received.

Federate 0 starts with the function call registerSynchronizationPoint. The call is answered by
the RTI using the synchronizationPointRegistered callback as a notification. The
announcement follows in the next message and is received by all federates in the
synchronization set. This set contains all federates which have to wait for the synchronization
point and is not necessarily the complete federation.

In Figure 3, the behaviour of the synchronization set is displayed when the synchronization
points are achieved. While Federate 1 has already finished its work before achieving the
point, Federate O still has to execute. Both send the service synchronizationPointAchieved to
the RTI and wait for the callback. When all federates in the set achieved the point, the RTI
replies with federationSynchronized and the federates can continue their execution.

SAFE4RAIL D3.2 Page 15 of 107

D3.2 — Report on Design of TCMS Distributed

; X L].
Simulation Framework Concept m““lm
RTI Federate 0 Callback-Handler || Federate 0 || Federate 1 Federate 1 Callback-Handler
SP achieved
wait for synchronization:
do some yark evoke CB
j; T
evoke CB
LoD é oo
SP achieved
wait for synchronizatidn|
evoke CB
Federation Synchronized o
P
evoke CB
L~ Z 2t Federation synghronized
L ‘}"iilf(:ll}i o evoke CB
[2 21 Federation synchronized
wakeup

Figure 3. HLA synchronize behaviour

The sequence diagram of the HLA time management is depicted in Figure 4. The services
used are nextMessageRequest and timeAdvanceGrant. They are explained in detail in
Section 4.2.1.1.2.

Federate O requests a time advance to instant ty of the logical time and waits for the RTI’s
grant. Meanwhile, Federate 1 sends all its messages io,...,iy after it has finished its execution
step. Afterwards, it requests a time advance until t; which is assumed to be after to. Hence,
the RTI can grant the time advance of Federate 0 and it first transmits all messages Federate
0 has to receive. The last message sent to the federate is the time advance grant containing
the granted time of ty, Federate 0 is now able to execute its simulation step and sends its
messages when the step is finished. This loop is performed by all time-constrained and
regulating federates in the federation execution.

SAFE4RAIL D3.2

Page 16 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept =201 O et =

RTI Federate 0 Callback-Handler | | Federate 0 | | Federate 1 Federate 1 Callback-Handler

nextMessageRequest to t0

wait for TAG

d

sendIntergction i0 for t0

sendInterajction iN for t0

nextMesspgeRequest to t1

wait for TAG

A §

sendInteraction i0 at t0 evokeCallback

e — — —

1 bufferMessage

sendInteraction iN at t0 evokeCallback

.~ _ 2 bufferMessage

timeAdvanceGrant to t0 evokeCallback

=~ TrsetTime
wakeup

doStep

sendInteraction][) for t1

sendInteraction]I\ for t1

m:xl.I\-‘IussagcR.(.‘qith to t2

wait for TAG

continue continue continue

___ P
wakeup wakeup
L > R L L

Figure 4. HLA time management

4.2.1.1.4 Time synchronization for SIL and HIL simulation

The time synchronization mechanism, explained in the previous sections, is used by the co-
simulation entities to synchronize the simulation bridges to a common, logical simulation
time. Thereby, there is no difference between SIL and HIL simulation. Figure 5 shows the
scheduled tasks of an end device (part a) and the HLA services used to synchronize the end
device with other end devices (part b).

The end device's schedule contains two tasks and 4 messages (see Figure 5, part a). The
first task (To) is time-triggered and starts at tick 3 (tStartTO). It requires message M, for its

execution which is received at tick 2. At tick 5, it sends message M; and based on its WCET
the task finishes at tick 6 (tEndTO). In contrast, the event-triggered task T, depends on the

arrival of message M, which is received at tick 8 (tsmrtn). At its end at tick 10 (tEndTl), the
task injects message M; into the network.

SAFE4RAIL D3.2 Page 17 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept -

i
(a) ED } }
0 1 2 3 4 5 G 7 8 9 10
T To(TT) T T T,(ET) T
f.“.\'.f{r."!-;-“ T!:—'{rtf;:I f.“.\'lfur'hl ff:'.r.'{f-;-l
1/3)NMR(3); 5)Step&Send M (5) 7)Step&Send M, (10)
6)N M R&TAG(8) l
2)TAG(2) | T
(b) HLA :/ i \:\ —
o 1 23 4 5 6 7 8 9 10
YTAGHR) T | I TW(ET) |

f.“.\'hr."!’-;-“ Ti:-'{rcf;:I f.“.\'lfur'hl ff:'.r.'ff-;-l

Figure 5: Synchronization steps: a) scheduled tasks of end device, b) HLA services and
synchronization steps

In Figure 5 part b, the schedule is used to explain the HLA time management services used
to synchronize the end devices and how the simulation bridges advance in time. At first, only
simulations without real end devices are considered. Starting at tick 0, the co-simulation
module requests a time advance using the NextMessageRequest service until the scheduled
beginning of T, (step 1). This time represents the next event in the local event queue.
However, the end device receives message My at tick 2 which is why only a time advance
until this tick is granted (step 2). Since the reception of M, does not trigger the execution of a
task, the time advance request is repeated (step 3) and granted in step 4. At tick 3, the
simulation tool can perform a simulation step to advance in time and execute T, represented
by the local event at tick 3. Using the Sendinteraction service, message M; which is
produced by the task is sent with a time-stamp of 5. Afterwards, the simulation bridge
requests the next time advance. Since message M, is received at tick 8, the request is
granted to this time and the dependent task T, is executed sending M, with time-stamp 10.
Although the same time management services can be used if a real end device is connected
to the simulation bridge in the HIL use-case, there are some differences compared to the SIL
use-case. Those are explained in the following.

Since FMI is used to interface the simulation tools to the simulation bridges, the FMI function
DoStep is used to trigger the execution of a simulation step until a specified time. Using
StepFinished, the simulation tool signals the end of the execution. Afterwards, the simulation
bridge can pull all messages from the simulation tool using the getXXX functions. However,
most of the real end devices tested are related to real-time. They are executed in parallel to
the simulation bridges and are connected via Ethernet. This is why the FMI functions are not
used and other synchronization mechanisms between the end device and the simulation
bridges have to be developed. The synchronization of the simulation bridges is realized using
the HLA time management as described above.

1. All simulation tools are faster than the real end device
2. The real end device is faster than the rest of the simulation
2.1. The real end device is event-triggered

2.2. The real end device is time-triggered

SAFE4RAIL D3.2 Page 18 of 107

D3.2 — Report on Design of TCMS Distributed : C
Simulation Framework Concept m“-‘l:._._.._‘“

Synchronizing the time advances of the end device depends on the features of the
applications in the simulation and the end device itself. Usually, the slowest device
determines the speed of the execution. Thereby, there is no difference whether the device is
real or simulated. If the real end device is the slowest device in the simulation execution (see
case 1 in the list above) so that all required data is received in time, there is no explicit
synchronization mechanism required. The reason is that the other simulation bridges block
their simulation tools until the time advances. This is the best case.

If the real end device is faster than the rest of the simulation (case 2), it does not receive the
required data in time. Hence, the delays must be mitigated. The simplest case is when all
tasks in the device are event-triggered and start when a message is received (case 2.1). In
this case the end device is synchronized implicitly since it has to wait for the message arrival.

Time-triggered end devices (case 2.2) cannot be suspended in most cases. Often they are
attached to 1/0O systems which need new control values continuously since otherwise the
functionality would be affected. In this case, the real end device must receive the required
data in time. To mitigate delays in the communication, a state estimation subsystem in the
delay management estimates the required information which is then provided to the device.

The simulation bridge forwards messages destined to the real end device from the other
federates in the simulation when the time advance is granted. After the reception, it has to
forward the message to the device. Due to the relation to real-time, the device's current time
must be synchronized with an image of the time in the synchronization bridge. Injecting the
received message in the Ethernet link follows the required timing characteristics. On the
other hand, the simulation bridge receives data messages from the device and converts
them into HLA interactions. Those interactions are forwarded to the receiving federates using
the HLA sendinteraction service as described above.

To signal the termination of a task in the end device there are two possible solutions. The
first one is to define a bit in the Ethernet messages sent which denotes the last message
created by the task. The other one would be sending an additional message signalling the
termination. While the first possibility has the advantage that no further message has to be
sent and the simulation bridge is notified as soon as possible, the second solution does not
require the end device to know, which message is the last one executed in the task.
However, the task needs to be finished if the message is sent at its end.

4.2.1.1.5 The HLA FOM

Messages in the HLA are called interactions defined in the Federation Object Model (FOM).
The listing below shows the content of the FOM for the Communication's Emulator. Data is
sent using the TRDP and FTP protocols between the different end devices wherefore an
interaction class is defined for each protocol. Since there are different message types, the
FOM defines an interaction class for each of them.

Due to the publish/subscribe concept of the HLA, a federate which subscribes to an
interaction Ethinteraction would receive every of those interactions even if it is not required.
Hence there must be a possibility to distinguish the messages sent by the end devices which
is solved exploiting the inheritance concept of the HLA. There are child-classes for each
communication link between a sender and a receiver. However, the solution reduces the
scalability of the framework if there are many devices. Since the end devices send their data
to a network simulation federate first which relays the message to the receiving federate, all
messages to the related network simulation federate can be pooled in one interaction class.
This way, the resulting number of interaction classes depends on the number of network
simulation federates. If there is only one of those federates, the number of interaction classes
is reduced to the number of end devices receiving interactions plus one class for messages
to the network simulation.

|<?xml version="1.0" encoding="UTF-8"7?>

SAFE4RAIL D3.2 Page 19 of 107

D3.2 — Report on Design of TCMS Distributed : C
Simulation Framework Concept I

— T~

<objectModel xmlns="http://standards.ieee.org/IEEE1516-2010"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://standards.ieee.org/IEEE1516-2010
http://standards.ieee.org/downloads/1516/1516.2-2010/IEEE1516-DIF-
2010.xsd">
<objects>
<objectClass>
<name>HLAobjectRoot</name>
<attribute>
<name>HLAprivilegeToDeleteObject</name>
</attribute>
</objectClass>
</objects>
<interactions>
<interactionClass>
<name>HLAinteractionRoot</name>
<interactionClass>
<name>EthInteraction</name>
<parameter>
<name>Packet</name>
</parameter>
<parameter>
<name>IngressTimestamp</name>
</parameter>
<interactionClass>
<name>EthMSGtoNET</name>
</interactionClass>
<interactionClass>
<name>EthMSGfromNETtoED2</name>
</interactionClass>
<interactionClass>
<name>EthMSGfromNETtoED1</name>
</interactionClass>
</interactionClass>
</interactionClass>
</interactions>
</objectModel>

Messages from the end device are either sent via FMI if the end device is a simulation tool or
sent via Ethernet if it is a real end device. The two possibilities determine which way needs to
be used to map the data to an HLA interaction.

The main fields in the FMI interface are called Data and Protocol. Since the data-type of Data
is FmiString, it is generic and supports all protocols. To distinguish them, the Protocol field is
used. The Simulation Bridge needs to convert the FmiString to a byte-array. From this array,
Header and Dataset can be decapsulated and converted to strings. OpenRTI uses a data-
type called VariableLengthData in the interactions. Hence, the strings must be further
mapped to the HLA type and encapsulated in the interaction.

In case of a real end device, the protocol stack of the received message is analysed to
determine the application protocol. TRDP and FTP are sent via TCP and UDP wherefore the
Simulation Bridge establishes a TCP/UDP-socket to communicate with the device. Since the
messages are already received as byte-arrays, only a mapping to the related interactions is
required. This is similar to the mapping in case of FMI.

4.2.1.2 The Functional Mockup Interface

SAFE4RAIL D3.2 Page 20 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

The Functional Mockup Interface (FMI) is a tool-independent standard. It is used for
exchanging dynamic models or to co-simulate them [8]. It provides an interface which is
implemented by more than 30 tools for version 1.0 and more than 25 tools for version 2.0 [9].

FMI mainly consists of two parts, the interfaces for Model Exchange (ME) and for the co-
simulation. The first interface aims at the creation of a modelling environment which is able to
generate C-code of a dynamic system model. Another simulation environment is hence able
to use the generated code as an input/output block. In general, models are described by
differential, algebraic and discrete equations with time-, state- and step-events. The second
type of interfaces is used for co-simulation. In such environments, two or more simulation
tools (slaves) are coupled by a master algorithm. This algorithm is responsible for the
synchronization of the simulation tools and the exchange of data between them at discrete
communication points. In between, the subsystems are solved independently by their own
solver. If the master algorithm connects models for model exchange, it also solves the
models [9]. Although FMI supports different algorithms, it does not define one in the standard
[10]. As explained in D3.1, there are many solutions available which combine FMI with the
HLA. The combination will also be used in the distributed co-simulation framework.

While there were different interfaces for both use-cases of FMI available in version 1.0, the
main advantage of version 2.0 is the integration of both interfaces in one standard.
Additionally, small details were improved and new features introduced. Hence, the usage of
the standard is simplified and the performance is increased [11].

In the Distributed Simulation Framework, FMI 2.0 is used to communicate a simulation tool or
an application (SIL) to the CEgsg. Table 1 shows the variables which are used to communicate
between the ED and the CEsg. The first column denotes the value and the second one
presents its data-type. While column three points out the direction of the interface (from CEgg
to the ED, vice versa or both), column four describes the values.

Value Data-type Direction Description

Data FmiString | Bidirectional | The packet which is received or shall be sent. It is
encoded as a Byte-Array in the CE and converted to
an FmiString in the interface.

Protocol Fmilnt Bidirectional | Protocol denotes the protocol used to encapsulate
the data. It is represented as a value from an
enumeration.

¥irsw?est8;mnd Fmilnt Bidirectional | Timestamp when the message has to be sent. Since

MSBS P a timestamp is 64bit and Fmilnt 32bit (in standard C),
this value represents the MSBs.

ﬁ;gjestssmnd Fmilnt Bidirectional | Timestamp when the message has to be sent. Since

LSBs P a timestamp is 64bit and Fmilnt 32bit (in standard C),

this value represents the LSBs.

Additional | According | Bidirectional | This value represents all variables which have to be
Data Fmi type configured, monitored or where faults can be
injected. It has to be replaced by all those variables
with the related data-types. They can be set
(configuration) or got (monitoring) using FMI’s set
and get functions.

Table 1: FMI variables for communication between CE and ED

4.2.2 Network simulator

SAFE4RAIL D3.2 Page 21 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

Riverbed (former OPNET) is a powerful commercial network simulator which is widely used
in the industry and academia to simulate and evaluate different communication layers,
network elements and protocols. Due to widespread usage, Riverbed (former OPNET)
evolves constantly to support a broader range of network protocols and technologies. In
addition, Riverbed has a comprehensive Graphical User Interface (GUI) that enables the
user to model a network topology from different levels of network (e.g. physical layer). The
visual design of a network topology maps to real system implementation using object-
oriented programming approach. Riverbed is a discrete-event triggered simulation tool. This
means when a user develops a use case, the events simulate the system operation. This
simulator also offers a programming technique to implement user-defined network protocols
and message formats. To develop a customized network model in Riverbed, a user needs to
specify node models and process models (which is a comprised state transmission machine)

Riverbed’s core functionalities are: modelling, simulating, and analysis. In Riverbed, the
simulation results are presented in different readable forms (e.g. graphs, statistics). Some of
Riverbed’s capabilities based on OPNET whitepaper can be listed as follow: parallel and
event-triggered simulation kernel, powerful GUI for model development, user friendly
debugging and data analysis tools, discrete event simulation engine, several standard
component with source code, object-oriented modelling and open interface for importing
external models [12], [13].

Since Riverbed (OPNET) is seen as a powerful simulation framework for the modelling and
performance evaluation of a wide range of existing and future networks, we decide to use it
for modelling the network simulator subsystems. Furthermore, prior simulation works
(including TTEthernet) have been done in OPNET. Therefore, using OPNET as a simulation
platform provides us an opportunity to simulate various wireless network setups with different
time-triggered protocols. These modelling activities do not require any additional effort and
simulation results can be analysed easily.

It could be mentioned also that external hardware or software can be connected directly to
RIVERBED (former OPNET) using System In The Loop module.

In addition to these facts, our industry partners use Riverbed for their simulation activities.
Thus, for integration and usability purposes it makes sense to use the similar simulation tool
for our network simulator.

Nevertheless, although Riverbed has been selected for the network simulator, this tool may
be replaced by another one (commercial or proprietary) to simulate the behaviour of several
Ethernet switches connected in a TCMS network.

4.2.3 Communication Security
In order to secure the (network) communication channel between CEsgs and the
corresponding PC running RTI, the following protocols of VPN were under consideration:

e Point-to-Point Tunnelling Protocol (PPTP) — operates without certificate infrastructure

e Layer Two Tunnelling Protocol (L2TP) — strong authentication by means of user-level
and computer-level authentication

e Internet Protocol Security (IPSec) — provides per packet data authentication, data
integrity, replay protection and data confidentiality

e Secure Socket Tunnelling Protocol (SSTP) — breaches the geological boundary
e OpenVPN (SSL)

The latter will be considered in detail subsequently. OpenVPN represents a decisive software
tool in the VPN market for a peer-to-peer connection, which emulates the properties of a

SAFE4RAIL D3.2 Page 22 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

private link. Due to the GNU General Public License (GPL), OpenVPN is commonly used on
various operating systems in order to securely access remote facilities, while maintaining
privacy of information. Among others, OpenVPN enables a secure authentication by means
of a challenge-response procedure and pre-shared credentials, certificates or keys. The
security of OpenVPN relies on the well-established OpenSSL library and therefore offers up
to 256-hit AES key size for encryption of transmitted (communication) data [14].

For the communication channel between the CEsg and the RTI, at least the following
requirements shall be covered by the framework, respectively by the usage of OpenVPN:

e Enable secure communication for transmission of commands between
federates/components.

e Ensure confidentiality, authenticity and integrity of (configuration) files as well as data
transfer.

¢ Ensure communication channel between outstanding entities/PCs, e.g. between the
graphical user interface and the framework with regards to threats and attacks.

4.2.3.1 Establishing Secure Tunnel

Both client and server use a specific tunnel data transfer protocol based on OpenSSL in
order to establish a tunnel and transfer data successfully and securely. Before the main data
transfer can be started, the sending entity (client or server) has to transmit a payload
including a tunnel data transfer protocol header to the receiving entity. To be more accurate,
the header includes the SSL version, the chosen cipher settings and session-specific data.
Afterwards, the receiving entity, in the following the server, has to encapsulate the tunnel
data transfer protocol header from the received data packet. Additionally, the server has to
transmit its server information (cipher settings, session specific-data and certificate including
public key) as well. Subsequently, the client will authenticate and validate the received
certificate. Based on the result of the validation, the client has to create a pre-master secret
(valid for the current session only) and perform an encryption by means of server’s public key
provided within the certificate. Afterwards, the cipher of the session’s pre-master secret has
to be transmitted to the server, whereupon the cipher is decrypted by means of server’s
private key. Both the server and the client now have the ability to generate a symmetric
session key based on the exchanged pre-master secret. The session key will be used for the
succeeding communication (for en- and decryption of data packets), as long as the session
is valid. To be in-line on both sides, an acknowledgement will be dispatched among
themselves in order to use the session key only [14].

The tunnelling procedure behaves analogue in both direction. As mentioned before and
depicted in Figure 6, the RTI is acting as a server, the federate as a client. However, the RTI,
respectively the server, will initiate the establishment of the secure tunnel in the very first
step and send an authentication invitation to the federate.

SAFE4RAIL D3.2 Page 23 of 107

D3.2 — Report on Design of TCMS Distributed

; - L].
Simulation Framework Concept W‘Lm
RTI Federate
(Server-role) (Client-role)

|
AUTH_INVITATION - Authentication Invitation !

»
>

CLIENT_HELLO - Tunnel Data Transfer Protocol Header

-

I
I
I
|
:" (SSL Version, Cipher Settings, Session-Specific Data) :
i |
1 . I
| SERVER_HELLO - Server Information N
| (Cipher Settings, Session-Specific Data, Server's Certificate including Public Key (PK)) g Authenticate
! ! ¢ Server's Certificate
i i
1
! Create
1 Pre-Master Secret
i
1
| . Encrypt/Generate Cipher
|y MESSAGE — Transmit Cipher Epx (Pre-Master Secret)
T
I
1

Decrypt Pre-Master Secret
Dsk (Cipher)

Generate Session Key
Based on Master Secret

Generate Session Key
Based on Master Secret

i

ACKNOWLEDGE - Acknowledgement about agreed Encryption/Session Key_‘
»

A

Figure 6. Establishing Secure Tunnel between RTI and Federate

SAFE4RAIL D3.2 Page 24 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll

Simulation Framework Concept ——————— e

Chapter 5 Architecture model

The architectural model represents the overall framework of the system to be implemented. It
contains both structural and behavioural elements of the designed system. The architecture
model of the CE is shown in Figure 7. Within it, the main component is the Central PC which
contains the different modules that coordinate the execution of the co-simulation. Figure 8
presents these different modules.

Communication module: is in charge of providing a secure communication for the
different module of the PC. This communication is based on sockets or HLA
messages.

Communication’s Emulator Controller (CE(): is in charge of managing the execution
of the simulation and providing the Network simulation if necessary. This means that
the CEc is composed by its own sub-modules:

@)

Configuration Module: takes the configuration command from the CETS, and
configures the other modules accordingly.

Co-simulator Module: in charge of managing the HLA communication and
synchronization.

Network Simulator Module: provides the emulation of the network devices if
no network devices are connected to the CE. Two options are available within
this simulator:

= Network from the WP1: WP1 is focused on the creation of a solid
foundation and concepts for a “Drive-by-Data” railway network
architecture [15].

= ETB/ECN networks [16], [17], [TBC].

Communication’s Emulator Simulation Bridge (CEsg): Provide the
communication of the Network Simulator Models with the different devices in
the TCMS network.

User Interface (Ul): Provides an interface that allows the introduction of
configuration files and CETS commands.

Central Communication’s Emulator Toolset (CETS.): The CETS, is in charge of
managing and validating the structure and configuration of the systems based on
configuration files and messages receive from the CETSaster aNd CETSgjaveS. In the
other hand, the CETS, also provide the routing of the configuration and monitoring
command from the CETS,.ster t0 the corresponding CEggs.

SAFE4RAIL D3.2 Page 25 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

SarfettRAIL

e — — — — —

deployment System Architecture/

Real ED 1

Real ED 2

Real ED 3

i

Ethernet wire 1/0

CEPC1

Ethernet frames
(Socket, HLA)

Ethemnet wire

Ethemet wire /10

CEPC2

Simulation Host 1

simEpa |

Ethemet frames
(Sockety

Test Control PC 2

Ethemet frames

Ethemet frames
(Socket, HLA)

(Socket)

Ethemet frames
(Socket, HLA)

Simulation Host 2

SimEDs | SimEDG - |

Ethernet frames
(Socket, HLA)

Test Control PC 1

CEPC3

SFTS

g]

Ethernet

wire

Heterogeneous
Netw orks

Ethernet frames
(Socket, HLA)

Ethernet frames

Ethemet frames
(Socket, HLA)

Central PC

Co-simulation @
Module

/I\

(Socket)

(from
Actors)

8]

Network
Simulator Module

Figure 7. Architecture model of the co-simulation framework.

SAFE4RAIL D3.2

Page 26 of 107

D3.2 — Report on Design of TCMS Distributed —
Simulation Framework Concept Salret RAIL

e — — — — —

deployment System Architecture/

«device»
Central PC

Communication
Security Entity

Configuration E Co-simulation Module E

Module

Configurator E
Module

Co-simulation E
Entity

Monitoring
Module

Netw ork Simulator E
Module

ul

Ul Module E

Network Simulation E
Tool Entity

cEsB) | CE (SB) d]

Figure 8. Architecture model of Central PC

The Test Control PCs are another big part of the framework. These PCs allow the
configuration and monitoring of the EDs in the network. There are two types of Test Control
PCs depending on the type of CETS that they contain; slave PCs contain a CETSg. and
master PCs contain the CETSpaster-

The main difference between the CETSaster and CETSgave, iS that the master provides the
configuration and monitoring of distributed devices (these command are routed by the
CETS,), meanwhile the slave can only interact with devices which are directly connected to
the respective Test Control PC.

The CE cannot have more than one master at the same time.
Both CETSaster and CET Sgjave follow the structure presented in Figure 9.

¢ Configurator Module: is in charge of managing the configuration of its corresponding
CEsggs.

e Monitoring Module: recollects the monitoring information of the different CEggs.

e Communication module: is in charge of providing a secure communication with the
different elements of the CE.

SAFE4RAIL D3.2 Page 27 of 107

D3.2 — Report on Design of TCMS Distributed I'I

Simulation Framework Concept =201 & le——————

deployment System Architecture/

CETS
User Configurator Module Communication
Interface % > Module
Module
é Monitoring Module é Communication
Security Entity

Figure 9. Architecture model of Communication Emulator Toolset

The CE can consider real and simulated EDs, VCUs, HMlIs, Ethernet Train Backbone
Network (ETBN), Ethernet Consist Switch (ECS) or I/O boards connected to the TCMS
network. In order for these devices to be incorporated into the network they must be
connected to a CEsg. The CEsg ensures the correct interaction between the different devices.
Figure 10 depicts the modules that compose the CEsgg.

Communication Module: is in charge of providing a secure communication for the
different modules of the PC. This communication is based on sockets or HLA
messages.

Co-simulator Module: in charge of managing the HLA communication and
synchronization.

Wrapper Module: recollects the Ethernet communication frames, and 1/0O provided by
real or simulated ED. This information is later analysed and repackaged in order to be
sent to the corresponding ED or to the Network Simulator using the HLA
communication. When an output message is generated, a time stamp is added for
later use by the delay manager. The wrapper also takes the incoming messages from
the other CEsgs and sends the content to the ED using either the Ethernet connection
or the corresponding /0.

Delay Manager: analyses the incoming messages in order to determine if the delays
introduced by the network are acceptable or not and tries to mitigate them.

Fault Injection: introduces a predefined fault to the communication when needed. The
faults that can be introduces are related to the communication delay or to message
jamming (which prevent the reception of a set number of message).

Monitoring Modules: recollects the input and output messages in order to monitor the
communication when needed. This information is later sent to the corresponding
CETS.

Configuration Module: takes the configuration command from the CETS and
configures the other modules accordingly.

SAFE4RAIL D3.2 Page 28 of 107

D3.2 — Report on Design of TCMS Distributed —
Simulation Framework Concept Salret RAIL

e — — — — —

deployment System Architecture/

5]

CE (SB)

Co-simulation Entity E

Federate E RTI E

Ambassador Ambassador

CommunicationSecurity E
Entity

Figure 10. Architecture model of Communication’s Emulator Simulation Bridge

In order to provide the configuration and management of the simulated devices, the
framework can contain either a Ul (located in the central PC) or a SFTS. Both of these
elements are connected to the different simulated ED by a CEsg. This CEsg routes the SFTS
commands to the corresponding simulated EDs.

5.1 Interfaces

In the system, different interfaces should be taken into account. Firstly, the CE (CEsg and
CEc) exchanges HLA interactions via a heterogeneous network. This interface is used to
exchange TCMS data or SFTS commands. Furthermore, the CETS (CETSmasterrn CETSc and
CETSgave) Uses a socket to exchange managing data. Due to the fact that these two
interfaces communicate via a heterogeneous network, a VPN is used in order to ensure
security. The use of OpenVPN to do so has been discussed in Section 4.2.3.

5.1.1 Interface SFTS — CETS

The SFTS and the CETS processes run in the same PC, and they interact with each other by
a TCP/IP socket. The SFTS sends commands to the CETS to configure the CE, and it
receives a determined answer for some of these commands. All the available commands and
their corresponding answer are detailed in Table 2. Furthermore, in parenthesis, the
parameters which every command demands are shown.

SAFE4RAIL D3.2 Page 29 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept =201 O et =

The configuration and reconfiguration commands require a file to configure the system. Thus,
the SFTS should tell to the CETS the path of the desired file. If the system has been correctly
configured, the CETS returns a Configured message; otherwise, the CETS returns an error.

The monitoring start and monitoring stop commands start and stop the monitoring of the CE
signals/messages. The CETS should tell to the CETS the ID of the CEsg to be monitored,
and if the monitoring data should be save in a file or directly transmitted to the SFTS. The
data saved in a file during a test is sent to the SFTS at the end of this test, when the
simulation stop command is sent.

The configuration request command returns the configuration file which the system has
received. The CETS receives this file and sends the file path to the SFTS.

When the SFTS sends a fault injection command (start or stop), the ID of the CEsg and the
fault type should be indicated.

Finally, after the simulation stop command is sent, the SFTS receives all the monitoring files
(if any), and a stopped command indicating that the simulation has been stopped.

Commands from the SFTS to the CETS Answers from the CETS to the SFTS

Configure (configuration file path) Configured/Error

Reconfigure (reconfiguration file path) Configured/Error

Monitoring start (CEsg ID, save in file?) -

Monitoring stop (CEgg ID) -

Configuration request Configuration file (configuration file path)

Fault Injection start (CEsg, fault type) -

Fault injection stop (CEsg, fault type) -

Simulation stop Stopped

Table 2. Commands of the interface SFTS — CETS.

5.1.2 Interface SFTS — CEgg

This interface is used by the SFTS to command the SF. The SFTS sends the commands
encapsulated in a TCP/IP frame, being the destination address the address of the SF which
should receive the command.

The commands which the SFTS sends have to be defined by CONNECTA.

5.1.3 Interface Real ED — CEsg

This interface is an Ethernet or analog/digital 1/Os which are connected directly to the CEsg.
The CEgg will be seen by the real ED as the switch to which it would be connected in a real
TCMS, being the CEgg transparent for the real ED.

5.1.4 Interface SF (Sim. Tool) — CEsg

SAFE4RAIL D3.2 Page 30 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept -

————
———

This interface sends a set of FMI commands or any other alternative commands via TCP/IP.
These commands can be divided into:

e RTI commands:
o DoStep: ask the simulation tool to run up to a specified time.

o StepFinished: the simulation tool informs that a specified time has been
reached.

o |_Orequest: ask the value of a specific I/0 to the simulation tool.
o |_OMessageTraffic: the value of a specific 1/O is sent to the simulation tool.
e Communication data:

o SFTS commands: sent by the SFT to command the functional behaviour of
the simulation tool. As stated above, these commands should be defined by
CONNECTA.

o Communications with the rest of the elements in the TCMS network.

e State estimator: FMI commands will be used to an external state estimator. More
details about the state estimator and its interface are delved in Section 7.11.3.

5.2 Architectural requirements validation

This section presents the characteristics of the simulation framework that fulfil the
architectural requirements.

o CEgg creates a simulated channel for exchanging monitoring, configuration, analysis
and troubleshooting data locally or remotely. The communication between the CEgg is
managed by a CEc (req. ID_20001).

e The introduction of CEsg and CEc as part of the Local Communication Network (LCN)
ensures remote and local communication between real and simulated
system/subsystems (req. ID_20002).

O—O +> O=

1=

Contral PC

Figure 11. LC replaced by RC using CE

e One or more systems/subsystems can be connected to a single CEsz (reqg.
ID_20003).

SAFE4RAIL D3.2 Page 31 of 107

D3.2 — Report on Design of TCMS Distributed —
Simulation Framework Concept Sa F@LIR&

Heterogeneous \ Heterogeneous
Network Network

Central PC

¢

Heterogeneous
Network

Fanteal EC
LN ! Heterogeneous

Network

1
| 1
<]
1=

Figure 12. CE handles multiple LCN

o As seen in Figure 7 the CEsg and CEc are configured, controlled and monitored using
a combination of a CETSasterr @ CETSc and a set of CETSga.e (req. 1D_20004,
ID_20008).

o A CETShaster QN manage one or more CEsg (req. ID_20007) remotely by routing its
communication using the CETSc; meanwhile CETSga.e can only manage CEggs
locally (req. ID_20005).

PC

Figure 13. CETS handles multiple CE

e The CETSc ensures that a CEgg is only controlled by a single CETS (master or slave)
(reqg. ID_20006).

SAFE4RAIL D3.2 Page 32 of 107

D3.2 — Report on Design of TCMS Distributed —
Simulation Framework Concept Sa r@LI%

Figure 14. Only one CETS per CE
e The Simulation host can handle multiple EDs. (req. ID_20011)

Figure 15. SIM handles multiple EDS

e It is possible to distribute a system/subsystem between multiple simulation hosts and
to connect those using CEggs (req. 1D20012).

CEss EDS1 EDS2

EDS1 EDS2

EDS3 EDS4
CEss EDS3 EDS4

Figure 16. EDS distributable

e The simulation host is controlled by a SFTS. The commands of this tool set are sent
across CE by using CEggs (req. ID_20013, ID_20016).

Heterogeneous

Network CEse EDS1

1==="="

Central PC
Figure 17. SFTS and SIM connection
e The CEsg can be integrated into the simulation host (req. ID_20018)

CEss EDS1

prmp——

Figure 18. CE integrated into SIM

e The CETS and SFTS can be combined into a single computer as seen in the Test
Control PC 1 of Figure 7 (req. ID_20019).

¢ All communication and commands between the elements of the simulation follow the
HLA communication protocol (req. ID_20020).

SAFE4RAIL D3.2 Page 33 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept =201 O et =

e All communication related to the simulation framework is performed over a
heterogeneous network separated from the LCN (req. ID_20021)

SAFE4RAIL D3.2 Page 34 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll

Simulation Framework Concept ——————— e

Chapter 6 Dynamic model

The dynamic model defines the behaviour of the system taken as a whole. In simple terms it
describes how the system reacts in response to external stimuli (which may come from
humans or other systems). The diagram is depicted using a system state diagram.

The dynamic model for the CE is shown in Figure 19; it includes the different states of the
system which are:

Not configured: in this state the system has not been configured, and it is waiting for
the Config command.

Validated and connected: in this state the system has performed the validation of the
configuration files, as well as it has connected and initialized the different CEsgs and
CETSgjaves Of the system.

Configured: the registration of synchronization points and the configuration of the
object and interactions (publication and subscription) used by the different federates
has been performed.

Started: the SF simulation has been started and it is executing the main loop. During
this state the Reconfigure command may be sent, however, after this command the
FOM and the number of federates cannot be changed. The Reconfigure command
only changes the registered points and the published and subscribed objects and
interactions.

Stopped: the simulation has been stopped in order to configure the system using the
Config command, this means that the FOM and the number of federates can be
changed for the next test. During this state the monitoring files are collected from the
corresponding CEsg.

Info requested: Collects the configuration file form the CETSc and present it to the Ul.

Configure Monitoring: Configures a CEgg in order to provide the monitoring of the
messages of the CEsg. This monitoring sends the data directly to the Ul or is stored in
a monitoring file for later retrieval.

Stop Monitoring: Stops the monitoring process on a specific CEgg.

Fault injection configured: The fault injection command including the fault type has
been received by CEsg and it has been started.

Fault injection stopped The fault reset command indicating the fault type has been
received by the CEgg and this fault has been stopped.

SAFE4RAIL D3.2 Page 35 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

L]
R
e O

stm Dynamic Model /

Info requested

[Conf._info request]
Configure Monitoring
[Moniotring_start]

Stop Monitoring —

é[l_/_l_qglto ring_stop]

[Fault_injection]

Fault injection
configured

EntryPoint

v

Not configured

I
[Config]

Validated and
connected

V

Configured

!

Started
[Fault_reset]

Fault injection
stopped

N

[Reconf (The same federates and set
of interactions, different SP and
interaction subscriptions)]

|

N

[Sto%

[Config]

Stopped

Figure 19. Dynamic model of the Communication Emulator (CE).

SAFE4RAIL D3.2

Page 36 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll

Simulation Framework Concept ——————— e

Chapter 7 Subsystem model

The designed CE is composed of different subsystems, in this chapter a dynamic model is
presented for each one. The different subsystems in the system are:

User Interface subsystem.

Configurator subsystem (Central).
Configurator subsystem (Master/Slave).
Configuration subsystem.

Monitoring subsystem (Simulation Bridge).
Monitoring subsystem (Central).
Monitoring subsystem (Master/Salve).
Communication subsystem (Central).
Communication subsystem (Master/Slave, Simulation Bridge).
Wrapper subsystem.

Delay Manager subsystem.

Fault injection subsystem

Co-simulation subsystem.

Network Simulator subsystem

Furthermore, all interactions among the different subsystems have been defined. These
interactions are shown in the sequence diagrams in Chapter 12 Appendix I, in this chapter,
the sequence diagrams where each subsystem appears are named.

7.1 User Interface Subsystem

The Ul subsystem is located in the CETS, and is in charge of interacting with the user. Its
dynamic model is shown in Figure 20. The Ul subsystem received the commands from the
user, changing its state among:

Not configured: The system is waiting for an external user to configure it.

Configure file selected: The Configure command has been received and the
configuration file has been ordered to the user.

Configure file received: The configuration file has been received from the user and it
has been sent to the Configurator subsystem.

Configured and running: The whole system has been configured and it is running
now, this new state has been reported to the user.

Fault injection cmd received: The fault_start or fault_reset command has been
received from the user and it has been sent to the Fault injection subsystem.

Monitoring cmd received: The Monitoring_start or Monitoring_stop command has
been received from the user and it has been sent to the Monitoring subsystem.

Monitoring data received: The CETSaster has received monitoring data from a CEsg,
and it has been sent to the user.

SAFE4RAIL D3.2 Page 37 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

L]

————
———

e Configure request received: The user has ask for the configuration file, and this

request has been sent to the Central PC.

¢ Configuration file received: The configuration file has been sent by the Central PC to

the Ul subsystem which has sent it to the user.

e Error reported: An error has been detected in the configuration. Errors could occur
because another master has started the simulation or because the configuration file is

not correct. This is reported to the user.

e Stop cmd received: Stop command has been received

e Stopped: The system has stopped its working and this new state has been reported

to the user.
stm Ul subsystem /
Initial
Not configured
[Configure]
Stopped Error reported Configure file

selected

k—

[Select_Conf_File]
[Stopfed]

[Error]

Stop cmd received Configure file

received

[Stop]
[Reconfigure]

\[Stop]\ [Conf\iﬁured] ,7

[Fault_injection | Configured and
+—[Config_fil e]%

Fault_reset] running
[Monitoring_start | [Config_request]
M(ygjop] g\

Monitoring cmd o
received [Monitoring Data]

Fault injection cmd
received

Monitoring data
received

Configuration file

Configure request
received

received

Figure 20. Dynamic model of the User Interface Subsystem.

The User Interface subsystem is used in the next Use Cases, and therefore in its

corresponding sequence diagrams:
e Use case 1: Configuration. Figure 47 and Figure 49.
e Use case 2: Reconfiguration. Figure 50 and Figure 51.
e Use case 6: Monitoring/measurements start. Figure 55 and Figure 56.

e Use case 7: Monitoring/measurements stop. Figure 57 and Figure 58.

SAFE4RAIL D3.2

Page 38 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll

Simulation Framework Concept ——————— e

Use case 8: Configuration data request. Figure 59.
Use case 9: Simulation stop. Figure 60.
Use case 10: Fault injection start. Figure 61 and Figure 62

Use case 11: Fault injection stop. Figure 63 and Figure 64

7.2 Configurator Subsystem (Central)

The configurator subsystem (central) is located in the CETS, and is in charge of receiving the
configuration file and analyse it. Then, the configuration data is sent to the different
CETSqaeS and CEggs in the simulation. The different states in the model are:

Not configured: The system is waiting for an external user for configuration.

Error reported: An error has been detected in the configuration. In this state errors
can only occur because the configuration file is not correct.

Configure cmd received: The Configure command and the configuration have been
received. They have been sent to the configuration subsystem to configure the Co-
simulation subsystem and the Network simulator subsystem. The subsystem is
waiting for the CETS, to be configured.

Central PC configured: The Co-simulation subsystem, the Monitoring subsystem and
the Network simulator subsystem have been configured and they have confirmed it.
The CETSgveS are requested to send their configuration file.

Configure file received: A CETSga.e has sent the configuration file and the CETS, has
received it.

Controlled CEsgs information request: The Central PC has requested to the
CETSgaves Which CEggs they are going to control.

Controlled CEggs settled: Each CETSgjaeS has reported to the CETS, which CEggs it
is going to control in the simulation and the CETS, has sent to the CETSg..S and the
CETSaster Which CEggs are under their control.

Configuration information sent to the CEsg: The configuration information has been
sent to the CEggs associated to the CETSpaster-

Configured and running: The whole system has been configured and it is running
now, this new state has been reported to the Ul subsystem.

Fault injection started: The fault injection command has been received and it has
been routed to the corresponding CEsg.

Fault injection reset: The fault reset command has been received and it has been
routed to the corresponding CEsg.

Reconfigure cmd received: The reconfigure command has been received and it has
been sent to the Co-simulation subsystem and the Network simulator subsystem.

Configured: The CETS. has been reconfigured. The reconfigure command and the
reconfiguration file have been sent to the CE.

Stop cmd received: The Stop command has been received and it has been sent to
the Network simulator subsystem.

Central PC stopped: The CETS, has been stopped. Every CE and CETS is told to
stop the simulation.

CE or CETS stopped: A CE or a CETS confirmed its simulation is stopped.

Stopped reported: The subsystem reports that the simulation has been stopped.

SAFE4RAIL D3.2 Page 39 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

L]

————
T

stm Configurator /

Initial

i

Not configured

[Configure &
config_file_wrong]

-

f
[Configure &
config_file_correct]

Configure cmd
received

[Conf\iEured]

Central PC configured

———

[Configure]

Configure file
received

v

I
[NO]

v

Controlled CE(SB)s
information request

I
[Conf\iEured]

Controlled CE(SB)s
setled

More CETS to sent its
config file?

[VES]

—

More CETS to
sent its CE
(SB)? |

[NO]

[YES]

Reconfigure cmd
received

[Co nf\iEured]

Configured

Configuration
information sent to
the CE(SB)
[Configure &
config_file_correct]

f
[Conf\iﬁured]

[Configure &

Error reported config_file_wrong] Configured and

running

= [Configured]
%

[Fault_yV [Fault_res\e{l]fi

Error reported

CETS to confirm their

Stopped reported

[YES]
More CE(SB) or

stop?

CE(SB) or CETS
stopped

[Stopped]

Central PC stopped

<

[Sm;l)ped]

Stop cmd received

[Stop] T

Fault injection started Fault injection reset

Figure 21. Dynamic model of the Configurator (Central) Subsystem.

The configurator subsystem (central) is used in the next Use Cases, and therefore in its

corresponding sequence diagrams:

e Use case 1: Configuration. Figure 47 and Figure 49.

SAFE4RAIL D3.2

Page 40 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept -

————
T

Use case 2: Reconfiguration. Figure 50 and Figure 51.
e Use case 8: Configuration data request. Figure 59.
e Use case 9: Simulation stop. Figure 60.
e Use case 10: Fault injection start. Figure 61
e Use case 11: Fault injection stop. Figure 63
7.2.1 Configuration file
This files contains the configuration data that defines the CETSs (master and slave), the RTI

communication (federates, interaction, FOM file, Synchronization points) and the Network
Simulator. The configuration file has an XML (Extensible Markup Language) format.

<CommunicationEmulator>

<!-- Defines the different Communication Emulator Tool Sets —-->
<CommunicationEmulatorToolSets>
<!-- CETS information

- id: CETS identifier

- type: defines if the CETS is a master or a slave

- ip: ip address of the CETS -->

<CETS 1d="CETSmaster" type="master" ip="192.168.0.100"/>
<CETS id="CETSslave" type="slave" ip="192.168.0.101"/>

</CommunicationEmulatorToolSets>

<!-- Defines the federation information

- executionName: Name of the Federation execution

- RTIip: ip of the RTI node that manage the HLA communiation-->
<Federation executionName="TCMSnetwork" RTIip="192.168.0.1">

<!—-— Number od federates in the federation -->
<NumberofFederate>8</NumberofFederate>
<!-- Federate information

- 1d: Federate identifier
- isTimeConstrained: Is the federate time constrained?
- isTimeRegulating: Is the federate time regulating?
- ip: ip address of the federate use for configuration
- CETSid: id of the CETS which control and monitors the federate
- lookahead: lookahead used by the HLA for synchronization-->
<Federate id="SimulationBridgel" isTimeConstrained="false"
isTimeRegulating="false" 1ip="192.168.0.2" CETSid="CETSslave"
lookahead="0.1">
<!-- Definition of Hardware In The Loop ED.
there can be more than one.
- id: ED identifier
- ip: ED ip address for communication
- maxCommLatency: Maximum latency for communication between
simulation bridge and end device (in ms). Used for calculation of time for
NextMessageRequest-—->
<HIL id="EndDevicel" ip="192.168.0.4" maxCommLatency="100">
<!-- Interactions which the federate is
subscribed/published.
All HIL devices have an interaction for the receiving
Ethernet frames, an interaction form sending Ethernet frames, an
interaction for each input variables and an interaction for each output
variables—->
<Interactions>
<!-- Interaction definition
- 1d: Interaction identifier
- type: defines if the federate publishes or subscribes
to the interaction -->
<!-- Ethernet framework interactions-->

SAFE4RAIL D3.2 Page 41 of 107

D3.2 — Report on Design of TCMS Distributed

Simulation Framework Concept “““‘Et======
<Interaction
id="EthernetMessage SimulationBridgel EndDevicel" type="published"/>
<Interaction
id="EthernetMessage SimulationBridge2 ConsintSwitchl" type="subscribed"/>
<!-- Input variable interactions-->

<Interaction i1d="IO_SimulationBridgel EndDevicel 1"
type="published" />
<Interaction id="IO_SimulationBridgel EndDevicel 2"
type="published" />
<!-- Output variable interactions—-->
<Interaction 1d="IO_SimulationBridgel EndDevice2 1"
type="subscribed" />
<Interaction id="IO_SimulationBridgel EndDevice2 2"
type="subscribed" />
</Interactions>
<!-- I/0 definition for HIL
This definition is only incorporated in federates that have
I/0 communication -->
<I_ 0>
<!-- Input and Output definition
- id: Input identifier
- type: defines if the I/0 is analog or digital
dataType: defines the data type of the I/0 variable
- interactionId: defines the interaction use to send or
receive the variable value
- port: defines the port associated to the I/O
- samplingTime (only for inputs): defines the sampling

time of the input

- threshold (only for analog inputs): define the
minimal differences between the current and previous value for an
interaction to be triggered -->

<Input id="1" name="EndDevicel I/Ol" type="analog"
dataType="uint8 t" interactionId="IO_SimulationBridgel EndDevicel 1"
port="ail" samplingTime="300" threshold="5"/>

<Input id="2" name="EndDevicel I/O2" type="digital"
dataType="bool" interactionId="IO_SimulationBridgel EndDevicel 2"
port="dil" samplingTime="100"/>

<Output 1d="3" name="EndDevicel I/O3" type="analog"
dataType="uint8_ t" interactionId="IO_SimulationBridgel EndDevice2 1"
port="aol" />

<Output id="4" name="EndDevicel I/04" type="digital"
dataType="bool" interactionId="IO_SimulationBridgel EndDevice2 2"
port="dol" />

</I_0O>
</HIL>
<!-— Definition of Simulated ED.

there can be more than one.

- id: ED identifier

- ip: ED ip address for communication-->
<SimulationTool id="EndDevice2" ip="192.168.0.5">

<!-- Interactions which the federate is
subscribed/published.

All Simulation tool devices have an interaction for the
receiving Ethernet frames, an interaction form sending Ethernet frames, an
interaction for each input variables, an interaction for each output
variables, an interaction to receive commands and information from the SFTS
and sent information to the SFTS -->

<Interactions>

<!-- Interaction definition
- id: Interaction identifier

SAFE4RAIL D3.2 Page 42 of 107

D3.2 — Report on Design of TCMS Distributed

; - L]
Simulation Framework Concept .__I

- type: defines if the federate publishes or subscribes
to the interaction -->

<!-- Ethernet framework interactions-->
<Interaction

id="EthernetMessage SimulationBridgel EndDevice2" type="published"/>
<Interaction

id="EthernetMessage SimulationBridge2 ConsintSwitch2" type="subscribed"/>
<!-- Input variable interactions-->

<Interaction id="IO_SimulationBridgel EndDevice2 1"
type="published" />

<Interaction 1d="IO_SimulationBridgel EndDevice2 2"
type="published" />

<!-- Output variable interactions—-->

<Interaction id="IO_SimulationBridgel EndDevicel 1"
type="subscribed" />

<Interaction i1d="IO_SimulationBridgel EndDevicel 1"
type="subscribed" />

<!-- SFTS communication interactions-->
<Interaction
id="SFTSCommunication SimulationBridge3 SFTS" type="subscribed"/>
<Interaction
id="SFTSCommunication_ SimulationBridgel EndDevice2" type="published"/>
</Interactions>
<!-- I/O definition for Simulation Tool

This definition is only incorporated in federates that have
I/0 communication -—->
<I 0>
<!-- Input and Output definition
- id: Input identifier
- type: defines if the I/0O is analog or digital
- dataType: defines the data type of the I/O variable
- interactionId: defines the interaction use to send or
receive the variable value
- real: defines if the SimulationBrige has a real I/0
board or if the value of the I/0 is transmitted using a Ethernet frame
- port (only for real I/0): defines the port associated
to the I/0-->
<Input id="1" name="EndDevice2 I/Ol" type="analog"
dataType="uint8_ t" interactionId="IO_SimulationBridgel EndDevice2 1"
real="false" />
<Input id="2" name="EndDevice2 I/O2" type="digital"
dataType="bool" interactionId="IO_SimulationBridgel EndDevice2 2"
real="true" port="dil"/>
<Output id="3" name="EndDevice2 I/O3" type="analog"
dataType="uintl6_t" interactionId="IO_SimulationBridgel EndDevicel 1"
real="false" />
<Output 1d="4" name="EndDevice2 I/04" type="digital"
dataType="bool" interactionId="IO_SimulationBridgel EndDevicel 2"
real="true" port="dol"/>
</I 0>
<!-- Definition of synchronization and communication
commands .
This element only appears in Simulation Tools that do not
implement the FMI standard.
It defines the different commands use by the SB to
communicate and synchronize the execution of a simulated ED
- bigEndian: defines if the values send/received during the
I/0 communication follows the big endian (true) or little endian (false)
structure -->
<CommandSet bigEndian="true">
<!-- Do Step command definition
Ask the Simulation Tool to run up to the specified time

SAFE4RAIL D3.2 Page 43 of 107

D3.2 — Report on Design of TCMS Distributed

; - L]
Simulation Framework Concept .__I

- commandId: defines the identifier that characterized
the do step command messages

- dataType: defines the data type use for specifying
the step time

- timeUnit: define the type unit use in the step time
——>

<DoStep commandId="33" dataType="uint64_ t"
timeUnit="millisecond" />

<!-- Step finish command definition

The Simulation Tools informs that the specified time
has been reach

- commandId: defines the identifier that characterized

the step finish command messages -->
<StepFinish commandId="34"/>
<!-- Data Message Traffic definition

Used for encapsulating Ethernet messages.

If the Simulation tool does not require the
encapsulation of the Etmernet message this element should not be defined.

- commandId: defines the identifier that characterized

the Ethernet messages data. —-->
<DataMessageTraffic commandId="45"/>
<!-- I/0 request command definition

Ask the Simulation Tool of the value of a spesific I/O.

If the Simulation tool does not provide I/O values via
Ethernet communication this element should not be defined.

- commandId: defines the identifier that characterized

the I/0 request command messages -->
<I Orequest commandId="38"/>
<!-- I O Message Traffic definition

Used for encapsulating I/0 values.
If the Simulation tool does not provide I/O values via
Ethernet communication this element should not be defined.
- commandId: defines the identifier that characterized
the I/0 messages data. -->
<I OMessageTraffic commandId="48"/>
</CommandSet>
</SimulationTool>
<SimulationTool id="EndDevice3" ip="192.168.0.6">
<Interactions>

</Interaction>
<I 0>

</I_0O>

<!-- FMI configuration

If FMI is used to connect a simulation, the simulation and
additional data such as its FMI description file are encapsulated as FMU.
During the simulation execution, the FMU is extracted to a temporary folder
in the same location. An empty string signals that FMI is not used.-->

<FMI>
<!-- FMU path: Path where the simulation’s FMU is
located-->
<FMU path="../FMI/EndDevice3/"/>
</FMI>
</SimulationTool>
<!-- Definition of the message schedule

—-id: Identifier of the end device the schedule is related to.
There might be multiple schedules, one for each device or simulation-->
<MessageSchedule id="EndDevice2">
<!-- Message Schedule
Message schedule is used to detect if a message is delayed
and to inject an estimated message if state-estimation is enabled -->

SAFE4RAIL D3.2 Page 44 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

L]
R
e O

<TTmessages>
<!-- Time-triggered messages
- MsgID: Message identifier (HLA interaction ID)
- SenderID: Sender ED identifier
- period: defines the period of the TT message
- offset: defines the offset in the period when the
message 1s changed
- lenght: defines the length of the message
- type: defines if the Ethernet frame is sent or
received by the device-->
<TTmessage
MsgID="EthernetMessage SimulationBridgel EndDevice2" SenderID="EndDevice2"
period="1" offset="1" length="1000" type="send"/>
<TTmessage
MsgID="EthernetMessage SimulationBridge2 ConsintSwitch2"
SenderID="EndDevice3" period="0" offset="1" length="1010" type="receive"/>
<TTmessage MsgID="IO_SimulationBridgel EndDevice2 1"
SenderID="EndDevice2" period="0" offset="3" length="100" type="send"/>
<TTmessage MsgID="IO_ SimulationBridgel EndDevice2 2"
SenderID="EndDevice2" period="0" offset="5" length="100" type="send"/>
<TTmessage MsgID="IO_SimulationBridgel EndDevicel 1"
SenderID="EndDevice3" period="0" offset="7" length="150" type="receive"/>
<TTmessage MsgID="IO_SimulationBridgel EndDevicel 2"
SenderID="EndDevice3" period="0" offset="9" length="150" type="receive"/>
</TTmessages>
<RCmessages>
<!--Rate-constrained messages
- MsgID: Message identifier (HLA interaction ID)
- SenderID: Sender ED identifier
- rate: defines the rate with which the message is
sent. Implicitely defines the Minimum Inter-arrival Time (MINT)
- lenght: defines the length of the message
- maxINT: defines the Maximum Inter-arrival Time before
which the message should be received
- probability: defines the probability the message is
received since RC message are not necessarily sent. If the message is sent,
the value can be ignored.
- type: defines if the Ethernet frame is sent or
received by the device-->
<RCmessage
MsgID="SFTSCommunication SimulationBridge3 SFTS" SenderID="EndDevice3"
rate="64" length="50" maxINT="1000" probability="0.5" type="receive"/>
<RCmessage
MsgID="SFTSCommunication SimulationBridgel EndDevice2"
SenderID="EndDevice2" rate="64" length="50" maxINT="1000" probability="1"
type="send" />

</RCmessages>
</MessageSchedule>
<!-- Definition of the task schedule

—-id: Identifier of the end device the schedule is related to.
There might be multiple schedules, one for each device or simulation-->
<TaskSchedule id="EndDevice2">
<!-- Task schedule
The task schedule is used to detect if all messages sent
from the related end device are received in the simulation bridge. This
enables the invocation of the NextMessageRequest-service in the co-
simulation subsystem -->
<PeriodicTasks>
<!-- Periodic tasks
- taskID: Task identifier
- period: defines the period of the task

SAFE4RAIL D3.2 Page 45 of 107

D3.2 — Report on Design of TCMS Distributed

; - L]
Simulation Framework Concept .__I

- offset: defines the offset in the period when the
task starts
- WCET: defines the Worst-Case-Execution-Time of the
task
- msgs: denotes all messages which are sent by the task
in the related order-->
<PeriodicTask taskID="Taskl" period="1" offset="0"
WCET="5"
msgs="EthernetMessage SimulationBridgel EndDevice2,IO SimulationBridgel End
Device2 1"/>
</PeriodicTasks>
<SporadicTasks>
<!-- Sporadic tasks
- taskID: Task identifier
- rate: defines the rate with which the task is
executed. Implicitely defines the Minimum Inter-arrival Time (MINT)
- WCET: defines the Worst-Case-Execution-Time of the
task
- msgs: denotes all messages which are sent by the task
in the related order
- triggerType: defines if the trigger for the task’s
execution is a message or the termination of a task
- trigger: denotes the ID of the triggering task or
message——>
<SporadicTask taskID="Task2" rate="64" WCET="3"
mesgs="SFTSCommunication SimulationBridgel EndDevice2" triggerType="msg"
trigger="SFTSCommunication SimulationBridge3 SFTS"/>
</SporadicTaskSporadicTasks>
</TaskSchedule>

<!-- Definition of the delay manager

-maxDrift: defines the maximum difference between the wall-
clock time of the HIL device (the time the simulation is running on the
device) and the logical time of the CESB

—-maxDelay: defines the maximum delay before a message has to be
received by the HIL device-->

<DelayManagement maxDrift="1000" maxDelay="1000"/>

<!-- Definition of the state-estimation

-enabled: defines if the state-estimation is enabled

—-fmuPath: defines where the FMU of the State-Estimation
functionality is located. Can be ignored if the state-estimation is
disabled-->

<StateEstimation enabled="true"
fmuPath="../FMI/StateEstimation/" />

</Federate>
<Federate id ="UserInterface" type="HIL" isTimeConstrained="false"
isTimeRegulating="false" 1ip="192.168.0.3" CETSid="CETSmaster">

</Federate>

</Federation>
<!-- Contains the information regarding the HLA Federation Object Model
file. The structure of this file can be found in -->
<FOM>
<!-- The FOM file has been defined in Section 4.2.1.1.5
- FomFile: Path to FOM file
- MimFile: Path to MIM file, contains additional data for RTI
(optional) ——>
<FomFile path="UserInterface"/>
<MimFile path="UserInterface"/>
</FOM>

SAFE4RAIL D3.2 Page 46 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept ““““t======

<!-- Definition of the synchronization points

host: id of the federate in charge of registering the synchronization
points —-->

<SynchronizationPoints host="UserInterface'">

<!-- Synchronization point information
- id: Synchronization point identifier -->
<SynchronizationPoint id="Configuration">
<!-- Federates which are affected by the synchronization point

<ManageFederate federateId="UserInterface"/>
<ManageFederate federateId="EndDevicel"/>

</SynchronizationPoint>

</SynchronizationPoints>

<!-- Definition of the network emulator —-->
<NetworkEmulator>
<!-- Control Gate List (CGL) is specified for each device’s egress

port and defines at each instance of time which queue is eligible to
transmit traffic.
- num CGR: Number of Control Gate Rows -->
<CGL num_ CGR="2">
<!--Control Gate Rows
- start time: Start time of period when CGR applies
- end time: End time of period when CGR applies
- Queue mask: Specifies each queue’s gate status in a period
and endtime parameters -->
<CGR start time="0" end time="100" queue mask="01111111"/>
<CGR start time="100" end time="300" queue mask="10000000"/>
<CGR start time="300" end time="600" queue mask="01111111"/>
</CGL>
<!-— TT streams specification is defined for each device in network
simulator subsystem and based on these information traffic categorized to
TT and non-TT flows
- num TT: Number of TT Streams in -->
<TT_sEreams num_ TT="1">
<!--TT stream parameters
- source port: The port at which TT frames are arriving
- phase: It define the time instant that network simulator
expects that the reception of TT flow starts. It is an offset in a range
[0,period duration].
- period duration: Specifies periodicity of the TT flow
—-transmission duration: It defines how long the reception of TT
frames can continue.
-vlan id: VLAN tag in IEEE802.1Q header -->
<TT>
<TT parameter source port="600" phase="600"
period duration="1000" transmission period="200" vlan id="20"/>
<!--Destination ports For a TT flow, the path from sender
to receivers is specified at configuration state, This parameter list
egress ports for the TT flow.
- num dest ports: Number of egress ports
-port id: Id of destination port -->
<dest ports num dest ports="1">
<port id="10"/>
</dest ports>

</TT>
</TT streams>
<!-- Definition of the switch configuration -->

<SwitchConfiguration>
<node name="TSN_switchl" min match score="strict matching"
ignore questions="true" model="ethernetl6 switch adv_tsn">

SAFE4RAIL D3.2 Page 47 of 107

D3.2 — Report on Design of TCMS Distributed

; : L]
Simulation Framework Concept

<ext-attr name="config file" type="string">
<default-value value=""/>

</ext-attr>

<ext-attr name="CGL_file" type="string">

</ext-attr>

<attr name="Bridge Parameters.count" value="1"/>

<attr name="Bridge Parameters [0].QoS Parameters.count"
value="1"/>

<attr name="Bridge Parameters [0].QoS Parameters [0].QoS
Support" value="Enabled" symbolic="true"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port QoS Scheme" value="Strict Priority" symbolic="true"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration.count" value="8"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration [0].Priority" value="0"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration [0] .Mapped User Priority Values.count"
value="1"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration [0] .Mapped User Priority Values
[0] .User Priority" value="O (Best Effort) - Default Priority"
symbolic="true" />

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration [0].Priority Queue" value="Yes"
symbolic="true"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration [0] .Weight" value="20"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration [0] .Maximum Queue Size" value="1000"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration [1].Priority" value="1"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration [1] .Mapped User Priority Values.count"
value="1"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration [1l] .Mapped User Priority Values
[0] .User Priority" value="1 (Background)" symbolic="true"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration [1].Priority Queue" value="Yes"
symbolic="true"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration [1] .Weight" value="40"/>

<attr name="Bridge Parameters [0].QoS Parameters
[0] .Default Port Queue Configuration [1l].Maximum Queue Size" value="1000"/>

<attr name="Switch Port Configuration.count" value="16"/>

<attr name="Switch Port Configuration [0] .VLAN
Parameters.count" value="1"/>

<attr name="Switch Port Configuration [0] .VLAN Parameters
[0] .Supported VLANs.count" value="2" symbolic="true"/>

<attr name="Switch Port Configuration [0] .VLAN Parameters
[0] .Supported VLANs [0].Identifier (VID)" value="20"/>

<attr name="Switch Port Configuration [0].VLAN Parameters
[0] .Supported VLANs [0] .Name" value="VLAN 20"/>

<attr name="Switch Port Configuration [0] .VLAN Parameters
[0] .Supported VLANs [0].Tagging" value="Send Tagged" symbolic="true"/>

<attr name="Switch Port Configuration [0].VLAN Parameters
[0] .Supported VLANs [1].Identifier (VID)" value="10"/>

<attr name="Switch Port Configuration [0].VLAN Parameters
[0] .Supported VLANs [1].Name" value="VLAN 10"/>

<attr name="Switch Port Configuration [0] .VLAN Parameters
[0] .Supported VLANs [1].Cost" value="Same as Port" symbolic="true"/>

SAFE4RAIL D3.2 Page 48 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept =201 O et =

<attr name="Switch Port Configuration [0].VLAN Parameters
[0] .Supported VLANs [1].Priority" value="Same as Port" symbolic="true"/>

<attr name="Switch Port Configuration [0].VLAN Parameters
[0] .Supported VLANs [1].Tagging" value="Send Tagged" symbolic="true"/>

<attr name="Switch Port Configuration [0].VLAN Parameters
[0] .Supported VLANs [1] .Learning Mode" value="Enable-Forward"
symbolic="true"/>

<attr name="Switch Port Configuration [0].QoS
Parameters.count" value="1"/>

<attr name="Switch Port Configuration [0].QoS Parameters
[0] .Port User Priority" value="0 (Best Effort)" symbolic="true"/>

<attr name="config file" value="config"/>

<attr name="CGL_file" value="CGL"/>

</node>

</SwitchConfiguration>
<!-- Definition of the link configuration -->
<LinkConfiguration>
<link name="TSN switch3 - Server 2" min match score="strict
matching" ignore questions="true" model="100Gbps_Ethernet" destNode="Server
2" srcNode="TSN_switch3" class="duplex">
<attr name="transmitter a" value="TSN_switch3.hub tx 1"/>
<attr name="receiver a" value="TSN switch3.hub rx 1"/>
<attr name="transmitter b" value="Server 2.hub tx 0 0"/>
<attr name="receiver b" value="Server 2.hub rx 0 0"/>
<attr name="doc file" value="nt_link"/>
<attr name="tooltip" value="Ethernet 100Gbps Link"/>
</link>

</LinkConfiguration>
</NetworkEmulator>
</CommunicationEmulator>

7.3 Configurator Subsystem (Master/Slave)

The configurator subsystem (master/slave) is located in the CETSaster and the CET SgjaveS.
The one which is located in the CETS,.ster receives the configuration file from the user to
configure the system, while the others are requested by the Central PC to send their
configuration file. The different states in the model, shown in Figure 22, are:

¢ Not configured: The system is waiting for an external user for configuration.

o Configure cmd received: The Configure command and the configuration file is
received.

e Configuration file sent: The Communication subsystem has been told to open the
connection and the configuration file has been sent to the CETS..

e Error reported: An error has been detected in the configuration. Errors could occur
because another master has started the system or because the configuration file is
not correct. This is reported to the Ul subsystem.

e Configure file sent: The CETS, has requested the configuration file to the CET SgjayeS.
This configuration files contains the information of the CEsg manage by the CET Sgjaye-
The file has been sent to the CETS..

o Controlled CEsgs settled (master): The CETS, has informed the CETSnaster Which
CEsggs is going to control.

e Controlled CEsggs settled (slave): The CETS, has informed the CETSgave Which CEggS
is going to control.

SAFE4RAIL D3.2 Page 49 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept -

————
T

e Configuration information sent to the CEsg: The configuration information has been
sent to the CEggs associated to the CETSq .

o Configured and running: The whole system has been configured and it is running
now, this new state has been reported to the Ul subsystem.

e Fault injection reset: The fault reset command has been received and it has been
routed to the corresponding CETS..

e Fault injection started: The fault injection command has been received and it has
been routed to the corresponding CETS..

e Stop cmd received: The Stop command has been received and sent to the CETS..
The subsystem waits in this state system to be stopped and to report it.

o Reconfigure cmd received: The CETSaser has received the reconfigure command
and it has sent it to the CETS..

e Error reported: An error because the configuration file is not correct has been
detected. This has been reported to the Ul subsystem.

SAFE4RAIL D3.2 Page 50 of 107

D3.2 — Report on Design of TCMS Distributed

. X L]
Simulation Framework Concept m“‘l‘m
stm Configurator (Master/Slav e)/
Initial
Not configured
i
Error reported [Configure]
Configure cmd
received
[YES] [NO]
E |
[Error] [Configure] Isthe [Config_file_request]
master?
Configuration file sent Configure file sent
I
E E
[Set_CE] [Set_CE] [Stopped]
Controlled CE(SB)s Controlled CE(SB)s
setled (master) setled (slave)
. . Configuration
[Configured] [Configured] | jnformation sent to
the CE(SB)

Fault injection reset [Fault_reset]

T

Fault injection started

/]\ | \[Error]
[Configu]ed][Reil;nﬁgure] \

Reconfigure cmd

Configured and
running

Stop cmd received
[Stop]

Error reported
received

Figure 22. Dynamic model of the Configurator (Master/Slave) Subsystem.

The configurator subsystem (master/slave) is used in the next Use Cases, and therefore in

its corresponding sequence diagrams:

e Use case 1: Configuration. Figure 47 and Figure 49.
e Use case 2: Reconfiguration. Figure 50 and Figure 51.
e Use case 8: Configuration data request. Figure 59.

SAFE4RAIL D3.2

Page 51 of 107

D3.2 — Report on Design of TCMS Distributed ==t

Simulation Framework Concept ——————— e

Use case 9: Simulation stop. Figure 60.
Use case 10: Fault injection start. Figure 61 and Figure 62

Use case 11: Fault injection stop. Figure 63 and Figure 64

7.4 Configuration Subsystem

The configuration subsystem is in the Central PC and in the different CEsgs. The
configuration subsystem receives the information from the Configurator subsystem of the
CETSs and configures the system accordingly. The dynamic model of the configuration
subsystem is shown in Figure 23. The states are delved below:

Not configured: The system is waiting for an external user for configuration.

Configuration Information received: The configuration information send by the
corresponding CETS has been received.

CE subsystems have been configured: The CEsgs have been configured.
Configured and running: The whole system has been configured and it is running.

Stop cmd received: The Stop command has been received and it has been sent to
the other subsystem

Subsystem stopped: All subsystems have been stopped and the corresponding
CETS has been informed.

stm Configuration

Initial

!

Not configured

[Configure]

Subsyst t d
Configuration ubsystem stoppe

> Information receiv ed

¢ |

CE subsystems have Stop cmd received
been configured

$ T

Configured and [Stop]
running |

[Reconfigure]

Figure 23. Dynamic model of the Configuration Subsystem.

SAFE4RAIL D3.2 Page 52 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

L]

————
T

The configuration subsystem is used in the next Use Cases, and therefore in its

corresponding sequence diagrams:
e Use case 1: Configuration (scenario 1). Figure 47.
e Use case 2: Reconfiguration (scenario 1). Figure 50.

e Use case 9: Simulation stop. Figure 60.

7.5 Monitoring Subsystem (Simulation Bridge)

The monitoring subsystem (simulation bridge) monitors the interactions in the CEsgwhen it is
told to do so. It sends the monitoring data to the user or storage it in a file which sends once

the simulation is stopped. The different states in the model are:

¢ Not configured: The system is waiting for an external user for configuration.

e Configured and running: The whole system has been configured and it is waiting for

an interaction.

¢ Interaction data sent: Interaction data has been sent to the corresponding CETS (the

data is routed by the CETS, when sent to the CETSaster)-

o Data stored in the monitoring file: The interaction data has been stored into the

monitoring file.

¢ Monitoring file sent: The monitoring file has been sent to the corresponding CETS

(the data is routed by the CETS. when sent to the CETSaster)-

stm Monitoring (Simulation Bridge)/

Initial
Monitoring file sent Not configured
[No]
[Stop] [Monitoring_start]
[Yes] [Monitorling_stop]
Hasa)
monitoring /§ [Stop] Conflgurgd and
running

file?

—=
I

[Interaction_produced |
Interaction_subscribers]

Store data
in file?

[Yes| =

I
[No]

Interaction data sent

Data stored in the
monitoring file

Figure 24. Dynamic model of the Monitoring (Simulation Bridge) Subsystem.

SAFE4RAIL D3.2

Page 53 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept =201 O et =

The monitoring subsystem (simulation bridge) is used in the next Use Cases, and therefore
in its corresponding sequence diagrams:

e Use case 6: Monitoring/measurements start. Figure 55 and Figure 56.
e Use case 7: Monitoring/measurements stop. Figure 57 and Figure 58.

e Use case 9: Simulation stop. Figure 60.

7.6 Monitoring Subsystem (Central)

The monitoring subsystem (central) routes the commands and the monitoring data between
the CETSnaser and the different CEggs in the simulation. The different states in the model are:

¢ Not configured: The system is waiting for an external user to configure it.

o Configured and running: The whole system has been configured and it is running
nNow.

¢ Command sent to the corresponding CEsg: The CETSpaster monitoring commands has
been routed to the corresponding CEsg.

o Data sent to the CETSaster: The CEsg monitoring commands has been routed to the
CETSmaster-

stm Monitoring (Central)/

v

Not configured

Initial

[Configure]
[Monitoring_start |
- Monitoring_stop | Stop]
Configured and Command sent to the
running corresponding CE

(SB)

[Monitroing_data |
Monitoring_file]

Data sent to the
master CETS

Figure 25. Dynamic model of the Monitoring (Central) Subsystem.

The monitoring subsystem (central) is used in the next Use Cases, and therefore in its
corresponding sequence diagrams:

e Use case 6: Monitoring/measurements start. Figure 55 and Figure 56.
e Use case 7: Monitoring/measurements stop. Figure 57 and Figure 58.

e Use case 9: Simulation stop. Figure 60.

7.7 Monitoring Subsystem (Master/Slave)

SAFE4RAIL D3.2 Page 54 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept =201 O et =

This subsystem is in charge of managing the monitoring in the CEsg. The subsystem in the
CETSaster SENdS the commands to the Central PC to be routed to the CEsgg, while the
CETSsaves send the commands directly to the CEsgs. The different states in the model are:

e Started: The subsystem has been started and waits for the reception of a monitoring
command.

o Data sent to the Ul: The monitored data/file provided by the CEsg has been sent to
the Ul subsystem.

e Command sent to the CEsg: In the case of a CETSgave, the monitoring command has
been send directly to the CEsggs.

e Send command to the CETS.: In the case of CETSaster, the monitoring commands
have been sent to the CETS. to be routed to the corresponding CEsg.

stm Monitoring (Master/SIave)/

Initial

v

Started

[Monitroing_data | Data sent to the Ul

Monitoring_file]

[Monitoring_start | Monitoring_stop | Stop]
isthe Master
CETS?
I I
[Yes] [No]
Command sent to the Command sent to the
central CETS CE(SB)

Figure 26. Dynamic model of the Monitoring (Master/Slave) Subsystem.

The monitoring subsystem (master/slave) is used in the next Use Cases, and therefore in its
corresponding sequence diagrams:

e Use case 6: Monitoring/measurements start. Figure 55 and Figure 56.
e Use case 7: Monitoring/measurements stop. Figure 57 and Figure 58.

e Use case 9: Simulation stop. Figure 60.

7.8 Communication Subsystem (Central)

This subsystem is in charge of managing the communication of the central PC. The
subsystems in the central PC send the commands to the communication subsystem to be
routed to the corresponding CET Shastersiave OF CEsg. The different states in the model are:

e Started: The subsystem has been started and is waiting for the reception of a
communication command, interaction or socket messages.

SAFE4RAIL D3.2 Page 55 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept =201 O et =

e Data sent to CETSc: The data received via the socket has been sent to the
corresponding subsystem of the CETSc.

¢ Data sent to the co-simulation subsystem: The interaction data has been sent to the
co-simulation subsystem.

o Data sent via heterogeneous network: A socket message or an interaction message
has been transferred to other PC that contains the CEsg, CETSgjave OF CET Sphaster-

e Connection check: The state of the VPN and Socket has been checked.

e Connection closed: The VPN and Socket connection have been closed.

o Establish secure tunnel: Provides the secure connection between elements. The
different steps used for establishing the secure connection are:

O

Request_connection message sent: A request connection message has been
sent to the CEsg and the CETSgjaye-

Client_hello message received: The client_hello message that contains the
SSL version, cipher settings and session-specific data has been received.

Server_hello message sent: The cipher setting, session-specific data, server's
certificate including public key (PK) have been sent to the CEsg or
CETSastersiave With whom the secure channel has been established.

Cipher message received: The message containing the generated cipher has
been received.

Pre-master secret decrypted: The pre-master secret transferred in the cipher
message has been decrypted.

Session key generated: The session key based on the master secret has
been generated.

Acknowledge message sent: The acknowledge message has been sent to the
CEsgg or CET S astersiave With the Encryption/Session key.

Acknowledge message received and check: The acknowledge message has
been received and the Encryption/Session key has been checked.

Socket connection created: A socket connection with the communication
subsystem of the CEsg, CETSpaster OF CETSgjave has been created.

SAFE4RAIL D3.2 Page 56 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

L]

————
T

stm Communication subsystem (Central)/

Data sent to central

CETS
AN
wﬁge:l

[Interaction_message] Started

Initial

Data sent to the co-

[Check_connection]

[Send socket |

Connection check

Data sentvia

simulation subsystem

Send_interaction]

heterogeneous
netw ork

_—

[Close_Connection]

Connection closed [Request_cannection]

Request_connection
message sent

—

I
[Client_Hello]

[Client_Hello]

Client_hello message

~ received

v

Server_hello
message sent

[Ciplher]

Cipher message
received

v

Pre-master secret
Decrypted

I

v

Session key
generated

v

Acknowledge
message sent

f
[Acknowledge]

Acknowledge
message received
and check

v

[No] I
[Yes]

The two
Session key
are the same?

Socket connection
created

Are there \L
more CE(SB)
or CETS to

be
connected?[yeg]

[No]

Establish Secure Tunnel

Figure 27. Dynamic model of the Communication (Central) Subsystem.

The communication subsystem (central) is used in the next Use Cases, and therefore in its

corresponding sequence diagrams:

e Use case 1: Configuration. Figure 47 and Figure 49.

e Use case 2: Reconfiguration. Figure 50 and Figure 51.

SAFE4RAIL D3.2

Page 57 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll

Simulation Framework Concept ——————— e

Use case 3: SFTS commands. Figure 52.

Use case 4: Ethernet interaction. Figure 53.

Use case 5: I/O interaction. Figure 54.

Use case 6: Monitoring/measurements start. Figure 55 and Figure 56.
Use case 7: Monitoring/measurements stop. Figure 57 and Figure 58.
Use case 8: Configuration data request. Figure 59.

Use case 9: Simulation stop. Figure 60.

Use case 10: Fault injection start. Figure 61

Use case 11: Fault injection stop. Figure 63

7.9 Communication Subsystem (Master/Slave, Simulation Bridge)

This subsystem is in charge of managing the communication of the CEST astersiave aNd CEsgg.
The subsystems in the CETSastersiave @aNd CEgg route all their communications using the
communication subsystem.

The different states in the model are:

Started: The subsystem has been started and is waiting for the reception of a
communication command, interaction or socket messages.

Data sent to configuration/monitoring subsystem: The data received via the socket
has been send to the configuration or monitoring subsystem.

Data sent to the co-simulation subsystem: The interaction data has been sent to the
co-simulation subsystem.

Data sent via heterogeneous network: A socket message or an interaction message
has been transferred to the central PC or the CETSgave.

Connection check: The state of the VPN and Socket has been check.
Connection closed: The VPN and Socket connection have been closed.

Establish secure tunnel: Provides the secure connection between elements. The
different steps used for establishing the secure connection are:

o Client_hello message sent: The message containing the SSL version, cipher
settings and session-specific data has been sent to the central PC.

o Server_hello message received: The server VPN information regarding the
cipher setting, session-specific data and server's certificate including public
key (PK) have been received via the server_hello message.

o Server's certificate authenticated: The certificate of the central PC has been
checked.

o Pre-master secret created: The pre-master secret key for the communication
has been created.

o Cipher generated: The pre-master secret key has been created and
generated.

o Cipher message sent: The cipher has been sent to the central PC.

o Session key generated: The session key based on the master secret has
been generated.

SAFE4RAIL D3.2 Page 58 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

———————

L]

o Acknowledge message sent: The acknowledge message containing the
session key has been sent to the central PC.

o Acknowledge message received: The acknowledge message has been
received and the Encryption/Session key has been checked.

o Socket connected: The subsystem has created a socket connection with the
Central PC. In the case of CETSgaeS and CEggs controlled by a CETSgave the
corresponding socket connections (which connect both elements) have also
been generated.

stm Communication subsystem (distributed)/

Data sent to Connection check
configuration/monitoring

subsystem Initial

[Socketmﬁge] [Check}nection]

Started Data sentvia

heterogeneous
netw ork

Data sent to the co-
simulation subsystem — [Interaction_message]_|

s

[Close_Connection]

pd

Connection closed

[Send_socket |
Send_interaction] >

[Open_Connection |
Request_Connection]

-

Send client_hello Cipher message sent

—_ message
Server_hello Session key
generated

message received

I
[SeNe\r&Hello] \L

Acknow ledge
Server's certificate message sent

authenticated

\L [Acmo\ll/wledge]

Acknow ledge
Pre-master secret f
message received

created
\l/ \L The two Session
Cipher generated [No] key are the
same?

[Yes]

Socket connected

[|

Establish Secure Tunnel

Figure 28. Dynamic model of the Communication (Master/Slave, Simulation Bridge) Subsystem.

SAFE4RAIL D3.2

Page 59 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

The communication subsystem (master/slave, simulation bridge) is used in the next Use
Cases, and therefore in its corresponding sequence diagrams:

e Use case 1: Configuration. Figure 47 and Figure 49.

e Use case 2: Reconfiguration. Figure 50 and Figure 51.

e Use case 3: SFTS commands. Figure 52.

e Use case 4: Ethernet interaction. Figure 53.

e Use case 5: I/O interaction. Figure 54.

e Use case 6: Monitoring/measurements start. Figure 55 and Figure 56.
e Use case 7: Monitoring/measurements stop. Figure 57 and Figure 58.
e Use case 8: Configuration data request. Figure 59.

e Use case 9: Simulation stop. Figure 60.

e Use case 10: Fault injection start. Figure 61 and Figure 62

e Use case 11: Fault injection stop. Figure 63 and Figure 64

7.10Wrapper Subsystem

This subsystem is in charge of linking the real and simulated ED to the overall system. This
is done by collecting and providing Ethernet, FMI and 1/O data and repackaging them into
RTI interactions which are sent via the co-simulation subsystem; as well as taking the RTI
interaction provided by the co-simulation subsystem and transforming them to the
corresponding Ethernet, FMI and I/O data used by the EDs.

The behaviour of the wrapper subsystem varies depending in if the ED is a simulation tool or
a HIL, or if the ED has 1/Os or not. The different behaviours are delved below.

In the case a simulation tool do not follow the FMI standard, a set of user defined commands
can be used to interact with it. The corresponding commands are defined as part of the
configuration file.

7.10.1 Wrapper Subsystem for Simulation Tools with I/O as FMI variables

This wrapper corresponds to the one used for a simulation tool which has simulated 1/Os.
The 1/0Os are transmitted to the CESBs as a variable FMI, encapsulated into an Ethernet
frame.

The different states in the model are:
¢ Not configured: The system is waiting for an external user for configuration.

e Configuration command received: The subsystem has received a configuration
command and the configuration file.

e Configured and Running: The subsystem has been configured and is waiting for a
command.

e Monitoring start or stop received: The system has received a command to start or
stop the monitoring according to the configuration. After starting or stopping, the
system returns to the Running state.

e Interaction data transformed: A DoStep command has been received from the co-
simulation subsystem. The received interactions are converted to input data
according to the provided protocol. The messages are represented as FMI (or user
defined) data types.

SAFE4RAIL D3.2 Page 60 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

e Input data sent: The input data has been sent to the simulation tool via FMI (or using
the user defined commands).

o DoStep sent: The DoStep function has been triggered using the FMI interface (or
using the user defined commands). This function performs a simulation step in the
simulation. The simulation invokes the StepFinished function if the step has finished.

e Output data received: If the simulation step has finished, the output data (messages
and monitoring data) from the simulation have been obtain.

e Output data transformed: The output data has been converted to message
interactions (messages) and SFTC monitoring interactions (monitoring data).

¢ Interaction sent: The different interactions have been sent to the delay management
and monitoring subsystems.

stm Wrapper Ethernet subsystem /

DoStep sent Output data received
[Step Finished]
—
Input data sent Output data
Initial transformed
Not configured Interaction data Interaction sent

transformed

| A

[Configure]

[DoStep]
Configuration Configured and
command received ———————=> running

<[Configure]'

Monitoring start or
[Monitoring_start | stop received
%

Monitoring_stop]

Figure 29. Dynamic model of the Wrapper Subsystem for Simulation Tools.
7.10.2 Wrapper Subsystem for Simulation Tools with real 1/0
This subsystem is in charge of managing the 10 interactions of a Simulation Tool. When a
DoStep is received, from the co-simulation subsystem, it transforms the I/O interaction into

an I/O for the ED and when a Step Finished is received the value of the 1/O is collected,
validated and sent as an I/O interaction to the co-simulation subsystem.

The different states in the model are:
e Not configured: The system is waiting for an external user to configure it.

e Configured and running: The subsystem has been configured and it is waiting for a
DoStep or Step Finished command.

e |/O interaction transformed: An I/O interaction have been transformed into I/O values.

SAFE4RAIL D3.2 Page 61 of 107

D3.2 — Report on Design of TCMS Distributed C

Simulation Framework Concept ——————— e

I/O value changed: The new value received from the interaction has been modified in
the 1/0 board of the CEgp.

I/O value measured and checked: The I/O values has been validated in order to
determine if a new interaction needs to be sent. In the case of a digital input an
interaction is sent when a change on its value is detected. On the other hand, an
interaction of an analog input is trigered whin the diference between the previos and
new value exceeds its threshold (defined in the configuration file).

I/O interaction sent: The 1/O interaction containg the new value has been sent.

stm Wrapper subsystem STI/O/

Initial

v

Not configured

[DoStep & [Configure]
Interaction_wrapper & [Step
I/0 interaction I70] Configured and Finished] I/0 v alue measured
transformed running — = and checked

1/0 value changed 1/0 value
[NO] needsto be
[sent?

[YES]

¢ T

1/0 interaction sent

Figure 30. Dynamic model of the Wrapper Subsystem for Simulation Tools with I/O .

7.10.3 Wrapper Subsystem for HIL

This wrapper is used to connect a HIL to the CE. No I/Os inputs/outputs are supported, only
Ethernet frames. Also, it is valid for simulation tools which do not support DoStep or
StepFinished commands.

The different states in the model are:

Not configured: The system is waiting for an external user for configuration.

Configuration command received: The subsystem has received a configuration
command and the configuration file.

Configured and Running: The sub-system has been configured and waiting for a
command.

Ctrl CMD forwarded: The system has received a command to control the HIL device.
The command has been forwarded and if it is executed successfully, the system
returns to the Running state.

SAFE4RAIL D3.2 Page 62 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept =201 O et =

e Monitoring CMD received: The system has received a command to start or stop the
monitoring according to the configuration. After starting or stopping, the system
returns to the Running state.

e Interaction received: An interaction has been received from the fault-injection
subsystem and converted into messages for the ED according to the provided
protocol.

¢ Message forwarded to ED: The message has been sent to the ED via Ethernet.

e Ethernet message received: An Ethernet message from the ED has been received
and converted into a related to message interactions and monitoring interactions.

e Interaction sent: The interaction has been sent to the co-simulation, delay
management and mentoring subsystems.

stm Wrapper subsystem HIL/

Message forwarded Interaction sent
to ED
Initial
\L Interaction received Ethernet message
received

Not configured

N

| [Interaction_wrapper] [Ethernet_frame]
[Configure]
)) .) [Monitoring_start | o
Conﬂguratlo_n [Configured] Conflgurgd and Monitoring_stop] Momtormg CMD
command received running = received

<

|
/I\ [Ctrl\l;ZM D]

Ctrl CMD forwarded

Figure 31. Dynamic model of the Wrapper Subsystem for HIL.

7.10.4 Wrapper Subsystem for HIL with 1/0

This subsystem is in charge of managing the IO interactions of a HIL ED. When an 10
interaction is received, from the co-simulation subsystem, it is transformed into an 1/O for the
ED and when an /O variation is detected the value is sent as an I/O interaction to the co-
simulation subsystem. Also, it is valid for simulation tools which do not support DoStep or
StepFinished commands.

The different states in the model are:
e Not configured: The system is waiting for an external user to configure it.

e Configured and running: The sub-system has been configured and it is waiting for an
interaction or to reach the sampling time of an I/O.

SAFE4RAIL D3.2 Page 63 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept =201 O et =

e |/O interaction received: An I/O interaction has been received from the delay manager
subsystem.

¢ |/O value changed: The new value received from the interaction has been modified in
the 1/0 board of the CEgg.

e |/O value measured and checked: The sampling time of an I/O has been reached and
its value sampled. This sampling determines if a new interaction needs to be sent. In
the case of a digital input an interaction is sent when a change on its value is
detected. On the other hand, an interaction of an analog input is trigered when the
difference between the previous and the new value exceeds its threshold (defined in
the configuration file).

e |/O interaction sent: The I/O interaction containg the new value has been sent.

stm Wrapper subsystem HIL IIO/

Initial

v

Not configured

[Configure]
=~ - [Interaction_wrapper [Sampling
interaction i i
_ & 1/0] Configured and time] I/O value measured
received < running = and checked

1/0 value changed /r 1/0 value
[NO] needsto be
[sent?

[YES]

1/0 interaction sent

Figure 32. Dynamic model of the Wrapper Subsystem for HIL with I/O.

7.11Delay Manager Subsystem

7.11.1 Delay-Management concept

In hard real-time systems it is necessary to satisfy all deadlines since otherwise there might
be catastrophic consequences. To test the behaviour of those systems it is therefore
important to provide the required messages in time. Since the Internet introduces delays and
jitter which is indeterministic, the end device connected to the simulation bridge might not
receive the data it requires in time. The delay management subsystem manages the delays
to provide the best possible accuracy of the simulation.

Common message types in embedded systems are Time-Triggered (TT), Rate-Constrained
(RC) and Best-Effort (BE) messages. TT messages are fully temporally specified by period,
offset and length. Time-triggered protocols may support multiple periods in the schedule and
in each period an offset can be specified when the message needs to be sent.

SAFE4RAIL D3.2 Page 64 of 107

D3.2 — Report on Design of TCMS Distributed : C
Simulation Framework Concept m“-‘l:._._.._‘“

RC messages have less constraints on the sending time than the TT. The messages have a
defined maximum rate with which they may be generated. The minimum time between two
instances of frame f; is (f.rate)™* (called Minimum Inter-arrival Time, MINT) but there is no
upper bound defined. If a faulty sender injects messages with a higher rate, the messages
are dropped to provide the correctness of the system.

Based on the temporal constraints, the delay management subsystem can determine the
instant when the end device requires the reception of a message. For TT messages, the
instant of time is defined by the message schedule while BE messages do not have any
temporal bounds. Hence, BE messages are not estimated but forwarded when they arrive. If
TT messages do not arrive in time, they are estimated.

In case of rate-constrained messages, determining the instant of reception is not possible
with the parameters defined above since there is ho upper bound and the messages are not
necessarily sent. To handle the message type in the delay management, a Maximum Inter-
arrival Time (MaxINT) and a Reception Probability are introduced. In combination with the
MINT, MaxINT determines the time interval after the last reception in which the next RC
frame instance should be received by the end device. If not, the delay management will inject
an estimated RC frame if the reception probability fits.

The Delay-Management Subsystem continuously checks the bounds and decides if a
message needs to be delivered to the end device. If the required message is received by the
Co-Simulation Subsystem, it is forwarded to the device. Otherwise, the message is taken
from the State-Estimation functionality if this system is enabled. In the latter case, the
Simulation Bridge logs the estimated message, the real message as soon as it arrives and
the time of injection so that the user can decide if the simulation results are appropriate. It is
further possible to disable the State-Estimation functionality. Then the delay management
determines the delay and signals the SFTS to stop the simulation if the delay is too large.

If the Simulation Bridge connects a real end device to the rest of the simulation, there are
different time bases. The HLA realizing the communication and synchronization of the
different end devices is based on a logical time while a real end device works with a real,
physical time. Hence, there must be a synchronization mechanism between the simulation
bridge and the end device.

In the Delay-Management Subsystem, the device's current physical time is stored as a real-
time image. This image is updated periodically by using a time-stamp included into the
messages sent from the end device. If the number of messages sent does not provide a
sufficient synchronization granularity, the end device can further send explicit
synchronization messages (e.g. using the IEEE 1588 standard). In between, the real-time
image is updated based on the physical time of the node on which the Simulation Bridge is
executed.

It shall also be possible to connect existing real end devices to the simulation bridge. Those
devices may not include time-stamps or send explicit messages for synchronization. In this
case and if JTAG is supported, the interface can be used to read the device’s internal state.
If the end device does not provide any information which can be used, it is not possible to
synchronize it with other end devices or simulation tools.

7.11.2 Delay-Management Model

The resulting different states in the subsystem model are:
e Wait for configuration: The system is waiting for an external user for configuration.

e Configuration command received: If the system received a configuration command
and the configuration file is valid, the system and the simulation are configured in this
state.

SAFE4RAIL D3.2 Page 65 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

e Configured and Running with StateEstimation: If the configuration was successful and
the state-estimation is enabled, the system changes to this state. It is running and
waiting for a command

e Check Message Availability: As soon as the next instant for a message arrival is
reached, the system checks if a message is available from the co-simulation
subsystem for the related instant of time. The instants are stored in a list which is
updated during the simulation execution to contain the correct times

e MSG from CoSimulation: If a message is available in the co-simulation subsystem,
the system changes to this state.

o MSG from StateEstimation: If there is no message available from the co-simulation
subsystem, the next message has to be estimated in this state.

e Provide MSG to Wrapper with StateEstimation: The received/estimated message is
passed to the wrapper subsystem in this state. Afterwards, the system returns to the
Running state.

o Get MSG from Wrapper: If the HIL device attempts to send a message, it sends the
message via Ethernet to the wrapper. The wrapper forwards the message to the
Delay-Management which changes to this state.

o Check Timestamp: The Delay-Management checks the time-stamp provided in the
message and updates the real-time image of the end device’s physical time.

e Stop Simulation: There are two cases when the system changes to this state: (1) If
the state-estimation is enabled and the time-stamp exceeds the maximum drift (Anay)
between the time in the message (real-time in the HIL device) and the current logical
time of the federation and (2) if the state-estimation is disabled and the input
message is received after the maximum delay. In both cases the simulation has to be
stopped.

e Provide MSG to CoSimulation and StateEstimation: If the state-estimation is enabled
and the time-stamp is within the supported drift, the message is forwarded to the Co-
Simulation subsystem and State-Estimation functionality to be sent to the other
federates and to update the state in the State-Estimation. Afterwards, the system
returns to the Running state.

¢ Configured and Running without StateEstimation: If the configuration was successful
and the state-estimation is disabled, the system changes to this state. It is running
and waiting for a command

e Provide MSG to Wrapper without StateEstimation: The message received before the
maximum delay has passed is forwarded to the wrapper subsystem in this state.
Afterwards, the system returns to the Running state.

e Provide MSG to CoSimulation: If the state-estimation is disabled and the time-stamp
is within the supported drift, the message is forwarded to the CoSimulation
subsystem to be sent to the other federates and to update the state in the
StateEstimation. Afterwards, the system returns to the Running state.

SAFE4RAIL D3.2 Page 66 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

Provide
MSG to
Wrapper with
StateEstimation

Provide MSG
to Wrapper

Wait for

Configuration

MSG from

CoSimulation

H St

ateBEstimation

MSG from 1

without

StateEstimation
h

Check Message
Availability

MSG Received Conf. CMD

N received
/\' o {" t,}iJi‘ff.f'
[nstant
_ ¥ Conf. CMD Conf. CMD MSQG arrival
Configured o~ SRR R —
. o received Configuration | T eived Configured and
and Running > N - L
itl Command Running with
without Confieured Received Confieured | StateBEstimation
StateEstimation | Configure Ve onfigured | StateBstimat
NSE ASE

MSG Received

Md Omax

Get MSG
from Wrapper

Send MSG Send MSG

Iqlsl ﬁ_ &F””.!'
ANSE

1“"" {" &F””.E'
ASE

Provide MSG

to CoSim-

Provide
MSG to
CoSimnlation

Check Time-

ulation and

stamp

StateEstimation

I-'SI :) i?]?f!.?'

-,

Stop Simulation

Figure 33. Dynamic model of the Delay Manager Subsystem

7.11.3 State-Estimation Functionality

Providing the required input data for the end system even if the latencies introduced by the
network are too high to transmit the messages in time is the purpose of the State-Estimation
functionality. It estimates the future inputs based on the messages received during the
simulation execution and an estimation model.

To estimate future inputs, the subsystem requires knowledge of the data available in the end
device and the content of the messages received. Using this knowledge, the State-
Estimation functionality can aggregate the state of the required inputs during the simulation
execution. This state is called the Real State of the input. Based on it and the estimation
model, the subsystem estimates the required inputs for instances when a message could not
be delivered in time. Hence, the state prepared this way is called Estimated State.

During the simulation execution, the Delay-Management Subsystem provides all messages
received to the State-Estimation functionality. Using the knowledge about its content, the
message is analysed and the real state is updated even if the message arrives too late. The
estimated state is always calculated based on the current real state using a model. Often
statistical models or filters are used for the estimation such as Kalman, H.. or particle filters.

The knowledge the State-Estimation functionality requires depends on the system which is
simulated. Therefore, the system is designed as a black box. It uses the interface based on
FMI which is defined in Table 3 and provided by the Delay-Management Subsystem. The
explanation of the table is similar to the one for Table 1. If a new message is received and

SAFE4RAIL D3.2 Page 67 of 107

D3.2 — Report on Design of TCMS Distributed

Simulation Framework Concept

L]

————
T

provided to the State-Estimation functionality, the DoStep-Function of FMI is called. Using
the current time and the step size provided as parameters, the real state is updated and all
estimated messages until the end of the step are calculated. If the Delay-Management
Subsystem requires a message, if sets the message ID and gets the related estimated
message using the FMI get and set functions. The State-Estmation Subsystem has to be
implemented by the application developer, in Safe4RAIL only the API, the dynamic behaviour
and the configuration are defined. If there is no state-estimation required, it can be disabled
using the configuration file.

Value Data-type | Direction Description

Input MSG FmiString | DM to SE | Used to provide the message received in the co-
simulation subsystem to the State-Estimation
functionality

Next MSG ID Fmilnt DMtoSE |ID of the next message which has to be
forwarded to the end device

Estimated MSG | FmiString | SEto DM | The requested estimated message with
NextMsgld

Error too large FmiBool SE to DM | Denotes if the error between the estimation and

the real state is too large and the simulation
should be stopped

Table 3: Interface for the State-Estimation functionality

The different states in the dynamic model are:

Wait for configuration: The system is waiting for an external user for configuration.

Configuration command received: If the system received a configuration command
and the configuration file is valid, the system and the simulation are configured in this

State.

Configured and Running: If the configuration was successful, the system changes to
this state. It is running and waiting for a command

Update Real State: If the Delay-Management Subsystem provides a message and
triggers the update, the message is analysed and the real state is updated.

Get Estimated MSG: If the Delay-Management Subsystem requests a message for
forwarding it to the end device, this state calculates the estimated message and

returns it.

SAFE4RAIL D3.2

Page 68 of 107

D3.2 — Report on Design of TCMS Distributed ==t

Simulation Framework Concept ——————— e
Wait for
Configuration Do Step
Conf. CMD DoStep
received | Conf. CMD Triggered
Configuration received (C;nﬁ sured
Command

and Running

Received J C*:)nﬁg;ured>L

Get MSG
Triggered

Get Esti-
mated MSG

Figure 34. Dynamic model of the State-Emulator Functionality

7.12Fault injection Subsystem

This subsystem is in charge of introducing the faults into the CEsg when it is told to do so.
The different states in the model are:

¢ Not configured: The system is waiting for the fault injection to be introduced. If an
interaction is received it will be transmitted directly to the Wrapper subsystem.

¢ Interaction transmitted: the interaction has been sent to the Wrapper subsystem.

e Configured: The fault injection has been configured and is waiting for an interaction.
These faults only affect the Ethernet message interactions.

e Fault introduced: depending on the faults which are running, the delay has been
introduced to the communication and the message loss is calculated.

SAFE4RAIL D3.2 Page 69 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept =201 O et =

stm Fault injection subsystem /

Initial

!

Notconnigured [Interaction_subscribers]

Interaction
transmitted

—
[YES] -~

Other type of

faults being P

fault_injection
injected? \[NO] /r[- !
[stop]

A\

[fault_reset] Configured
%

[Interaction_subscribers]

Isan Interaction

Ethernet [NO] = transmitted

message
interaction? |
[YES]

Fault introduced

!

[NO] [YES]

The message needsto
be sent?

Figure 35. Dynamic model of the Fault injection Subsystem

The fault injection subsystem is used in the next Use Cases, and therefore in its
corresponding sequence diagrams:

e Use case 3: SFTS commands. Figure 52.

e Use case 4: Ethernet interaction. Figure 53.

e Use case 5: I/O interaction. Figure 54.

e Use case 9: Simulation stop. Figure 60.

e Use case 10: Fault injection start. Figure 61 and Figure 62

e Use case 11: Fault injection stop. Figure 63 and Figure 64

7.13Co-Simulation Subsystem

The co-simulation subsystem is based on the HLA standard for co-simulation. To use the
HLA services, several steps are required to be performed. Those steps are collected into
multiple high level states depicted in Figure 36. The co-simulation subsystem synchronizes
all devices in the co-simulation framework to a common, (logical) simulation time.

¢ Not configured: The system is waiting to an external user for configure itself.

e Connect and init: Performs the connection to the RTI, as well as the initial
configuration of the federate and the definition of the objects and interactions used by
the subsystem. This state is only entered when the framework is started.

SAFE4RAIL D3.2 Page 70 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept =201 O et =

e Registration: Registers synchronization points, publishes/subscribes objects and
interactions and registers object instances. To ensure a correct delivery of all
messages, the sub-states are only changed synchronously.

e Running: Carries out the main loop of the simulation.

e Reconfiguration: Recollects the new configuration files, unpublishes, unsubscribes
and eliminates the interactions and objects of the previous configuration, and defines
the objects and interactions used in the new configuration.

e Disconnect: If the simulation is finished and no further tests shall be executed or it is
stopped but there is no reconfiguration available, the co-simulation entity disconnects
from the RTI.

stm Co-simulation subsystem (centralized)/

Initial

Not configured

[Configure]

Connect and Init Disconnect

!

Reconfiguration Registration

-

I
4\ [HLC]/_init]

[Configure]

[Stop]

Running

Figure 36. Dynamic model of the Co-simulation Subsystem.

For the Connect and init, Registration, Running, Reconfiguration and Disconnect states,
some additional states are further specified in Figure 37, Figure 38, Figure 39, Figure 40 and
Figure 41 respectively. In the Connect and init state machine (Figure 37), the different states
are:

e Configuration information received: The configuration information has been received.
e RTI connected: the CE has been connected to the RTI.

e Federation Execution Created: The first CE creates the federation execution of the
simulation. Hence, an exception will be thrown if another federate tries to create the
federation execution. This exception can be ignored.

SAFE4RAIL D3.2 Page 71 of 107

D3.2 — Report on Design of TCMS Distributed C

Simulation Framework Concept ——————— e

Federation Execution Joined: the CE has joined the federation execution. From now
on, the federate can communicate with other federates in the federation execution via
the HLA services.

Obj./Interact. Configured: The objects, object instances and interactions which will be
published or subscribed have been configured. This step is separated from the initial
configuration since now the related RTI handles can be requested directly.

stm Connect and Init/

Initial

!

Configuration
information receiv ed

I
[Success]

RTI connected
f
[Success]

Federation Execution
created

f
[Success]

Federation Execution
joined

f
[Success]

Obj ./Interact.
configured

|

Final

Figure 37. Dynamic model of the Connect and init state.

In the case of Registration (Figure 38), the states that compose it are:

Synchronization points registered: Synchronization points have been registered by a
responsible CE. This might be the Central PC.

Synchronization points announcement received: The announcement of the
synchronization points has been received by the CEs which are not responsible for
the registration.

Publishers and subscribers defined: all publish/subscribe object classes and
interactions have been defined.

SAFE4RAIL D3.2 Page 72 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept -

————
T

e Object instances registered and discovered: The instances of the published object
classes have been registered and the object instances of the subscribed objects have
been discovered.

stm Registration /

Initial
[YES] [NO]
\L isthe
responsable
Synchronization CE? Synchronization
points registered points announcement
received
h
[synch] Publishers and synchl

subscribers defined

f
[synch]

Object instances
registered and
discovered

!
[synch]

Final

Figure 38. Dynamic model of the Registration state

The main loop synchronizes the devices in the co-simulation framework to a common,
(logical) simulation time. Independent from the type of simulation (SIL or HIL), the same
algorithm can be used. The states that define the main loop are:

e Next Message Requested: The CE has sent a next message request to the RTI to
advance in time. It guarantees not to send any message until the requested time.

o Messages received: All messages between the current time and the requested time
have been received. The messages have been forwarded to the ED.

¢ Time Advance Grant received: The time advance grant has been received from the
RTI. The co-simulation subsystem controls the execution of a simulation step until the
time of the granted event.

e ED interactions received: All ED interactions to be sent via the RTI have been
received. Afterwards, it can be checked whether the simulation is finished, a stop
command is available or if it has to continue.

SAFE4RAIL D3.2 Page 73 of 107

D3.2 — Report on Design of TCMS Distributed

Simulation Framework Concept

L]

————
T

stm Running /

Initial

I
[start]

Next message
requested

[RTI message]

Messages received

[Time Advance Grant]

Time Advance Grant
received

v

ED interactions
received

I
[finished /
stop]

Final

—

=)

ontinue]

Figure 39. Dynamic model of the Configured and running state.

When a reconfiguration is done in the system, the states executed are (Figure 40):

Reconfiguration command received: The co-simulation entity has received the
reconfiguration information.

Unpublished and unsubscribed: All objects and interaction which are not use in the
new configuration have been unpublished and unsubscribed.

Object and interaction configured: the new objects and interactions have been
generated.

SAFE4RAIL D3.2

Page 74 of 107

D3.2 — Report on Design of TCMS Distributed

Simulation Framework Concept

L]

————
T

stm Reconfiguration /

Initial

v

Reconfiguration
command recieved

!

Unpublished and
unsubscribed

!

Obj ./Interact.
configured

|

Final

Figure 40. Dynamic model of the Reconfiguration state.

Finally, when the stop command is received, the system follows the dynamic model shown in

Figure 41, whose states are:

¢ Unpublished and unsubscribed: All objects and interactions have been unpublished

and unsubscribed.

o Federation execution resigned: the CE has been disconnected from the federation
execution. The usage of HLA services is not possible anymore unless a configure

command is sent.

e Federation execution destroyed: the federation execution has been destroyed by the
last CE. All earlier attempts to destroy the execution have triggered exceptions which

can be ignored.

SAFE4RAIL D3.2

Page 75 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept =201 O et =

stm Disconnect /

Initial

v

Unpublished and
unsubscribed

v

Federation execution
resigned

V

Federation execution
destroyed

|

Final

Figure 41. Dynamic model of the Disconnect state.

The co-simulation subsystem is used in the next Use Cases, and therefore in its
corresponding sequence diagrams:

e Use case 1: Configuration (scenario 1). Figure 47.

e Use case 2: Reconfiguration (scenario 1). Figure 50.
e Use case 9: Simulation stop. Figure 60.

e Use case 3: SFTS commands. Figure 52.

e Use case 4: Ethernet interaction. Figure 53.

e Use case 5: I/O interaction. Figure 54.

e Use case 9: Simulation stop. Figure 60.

e Use case 10: Fault injection start. Figure 61 and Figure 62

7.14Network Simulator Subsystem

This subsystem simulates a TCMS network in case a real one is not connected to the
framework. The different states of model are:

¢ Not configured: the system is waiting for scheduling configuration files from the
central configurator.

e Scheduling configuration files received: The system receives the scheduling
configuration files containing TT stream parameters and Control Gate List (CGL)
parameters.

SAFE4RAIL D3.2 Page 76 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept =201 O et =

e Configured and running: The network simulator subsystems configured using the
configuration files and ready to receive packets from the directly connected
subsystems.

e Switch and port identified: the destination switch in the network simulator and the
destination port are identified, and the message is sent to this port.

e Switch state machine: the switch processes the message. This state machine is
delved below.

e Packet sent to the CEsg: the packet is sent to the CEsg to be sent to the ED.

SAFE4RAIL D3.2 Page 77 of 107

D3.2 — Report on Design of TCMS Distributed

Simulation Framework Concept

L]

————
T

stm Network Simulator subsystem/

—

Initial

v

Not configured

I
[Configure]

Scheduling
configuration files
received

!

Configured and
running

l
[Receive a packet]

Switch and port
identified

Switch state machine

[YES]

[NO]

Packet send to the
CE(SB)

Isthe packet sent to another

switch?

Figure 42 Dynamic model of the Network Simulator Subsystem.

The dynamic model of the Switch machine state is shown in Figure 43, all the states are

explained below:

o Evaluate packet for enqueuing: When the network simulator subsystem receives a
packet, the enqueuing process starts. It processes packet to derive information

SAFE4RAIL D3.2

Page 78 of 107

D3.2 — Report on Design of TCMS Distributed C

Simulation Framework Concept ——————— e

required for enqueuing packet in the correct egress port queue. The packet is
checked against TT streams configuration file. If the packet is TT frame, the reception
time is checked against the TT stream arrival time parameter.

e Drop packet: If the TT frame is arrived outside its own window, the network simulator
subsystem would drop the packet.

o Enqueue packet in the TT queue: If the TT frame is arrived within its window, the
network simulator subsystem would place the packet in the TT queue.

e Enqueue packet in non-TT queues: If the packet is not TT, packet would be
enqueued to egress queues that are not dedicated to TT flows.

o Evaluate packet for dequeuing: After the enqueuing of the message completes, the
network simulator starts dequeuing process.

e Specify which queue has a turn to transmit packet: The network simulator based on
own transmission selection algorithm decide which queue (which is not empty) can
send a packet. As a following step, the gate state of queue is determined using the
CGL configuration file.

o Dequeue packet: If the gate of the queue which has turn to transmit packet is enable
the network simulator forward the message to the corresponding destination.

o After dequeuing the packet, the subsystem checks whether there are more packets in
the egress queues. If there is, the dequeuing process starts all over. Otherwise the
network simulator goes to configured and running state and waits for reception of a
new packet.

¢ Find the next time slot: If the gate of the queue which has turn to transmit packet is
close, the next time slot that the gate would become open, derived from CGL
configuration. The network simulator stays in the idle state until the time instant in
which the queue gate is open reach.

stm StateMachinel /

Initial Evaluate packet for

dequeuing
e frame 772 /

Evaluate packet for Enqueue the packet Specify which egress

enqueueing [NO] to RC and BE queues queue has turn to

= = transmit packet

|

[YES]

\l/ Find the next time
Is gate open for > slot the gat would

‘ that queue? open
Drop packet Enqueue packetin

& % the TT queue [Y\I&S] \l/ 4\

Dequeue packet from [NO]

the egress queue and [YES]
dispatch to <

destination

Isarrived
in own
window?

Istime reached the next

\L dot?
!

Final

Isthere any packet in
egress queues?

Figure 43 Dynamic model of the Switch machine state.

SAFE4RAIL D3.2 Page 79 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept =017 "I2

SAFE4RAIL D3.2 Page 80 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept =201 O et =

Chapter 8 Instantiation of the system

In this chapter, two examples of utilization of the designed CE are presented. These
examples are based on the TCMS network shown in Figure 44. This network is composed by
two ETBNSs, two Consist Switches (CS) and different EDs, HMIs and I/Os. Two emergency
buttons are connected to a Train Control Unit (TCUZ2) which in turn is connected to the TCMS
network, as well as other EDs. The different devices are connected to either CS1 or CS2 to
form two consist networks which are connected by ETBN1 and ETBNZ2 respectively.

E1B

ECN2

ECN

? ?

Figure 44. Sample scenario for instantiation of the system

Both sample instantiations are composed of real and simulated EDs, as well as EDs located
in a different place. The use of the designed CE will ensure the proper operation of the
TCMS network.

As illustrated in Figure 45, in the first example some of the EDs and the emergency buttons
are simulated, while the backbone, the consist network and all other devices are real. The
backbone and the consist network of the TCMS, composed by ETBN1, ETBN2, CS1 and
CS2, are real hardware which are connected to a CEsg in order to allow connecting
simulated or real EDs via an heterogeneous network. CCUO1, |01, HMI1 and an emergency
button are simulated and connected to the TCMS via a LAN using another CEsg. The other
emergency button is simulated in another Simulation Host and also connected to the network
backbone via the same LAN. Furthermore, some real devices, like CCUO2, HMI2 and 102,
are connected in the same LAN. On the other hand, TCU2 is connected to the system via the
Internet. All the CEggs provide communication among the different devices in the network as
a real TCMS was built.

Besides the TCMS devices and the CEggs, there are a Central PC and a Test control PC in
the instantiation. The Central PC is composed by two parts, the CE. and the CETS,. The CE,
is in charge of coordinating all the CEgsgs in the system, while the CETS; is the responsible
for monitoring, configuring and starting the whole system. Regarding the Test control PC, it is
used to command the simulation. The commands to do so are divided into SFTS and CETS;
the SFTS commands to control the different simulations in the system are out of the scope of
this document, while CETS command to control the CE. The latter can configure, start or
stop the simulation and start or stop the monitoring.

SAFE4RAIL D3.2 Page 81 of 107

D3.2 — Report on Design of TCMS Distributed —
Simulation Framework Concept Sa r@LI%

Switch

Figure 45. Sample instantiation of the system.

The second example of instantiation is shown in Figure 46. In this example the emergency
buttons and all the EDs remains as they were in Figure 45, meanwhile the backbone and the
consist network are now simulated by a network simulator. This network simulator is
executed in the Central PC and it is connected to a CEgg to allow devices to connect via
heterogeneous networks.

SLent@alPC . . L - - - = "

CF Ed Ethernet

|
<> L TC

CE

c
CETS
c

101

Figure 46. Sample instantiation of the system with simulated network.

SAFE4RAIL D3.2 Page 82 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept =017 "I2

SAFE4RAIL D3.2 Page 83 of 107

D3.2 — Report on Design of TCMS Distributed ==Ll
Simulation Framework Concept =201 O et =

Chapter 9 Summary and conclusions

In this deliverable, a high-level design of a Communication Emulator (CE) to test and validate
Train Control and Monitoring Systems (TCMS) is presented. The proposed design allows
connecting different devices typically found in TCMS via a heterogeneous network. End
Devices (ED), Vehicular Control Unit (VCU) and Human Machine Interface (HMI) can be
connected to the CE to build up the TCMS network and carry out different tests and/or
validations. Furthermore, both real devices and simulated models of EDs, VCUs and HMIs
are supported by the system.

The design of the system is described through several Unified Modelling Language (UML)
diagrams. The use cases of the system and its scope, together with architectural and
dynamic models are shown in this document. Moreover, a dynamic model for each
subsystem is clearly specified, as well as a sequence diagram for each use case where the
interactions among subsystems are shown.

The high-level design of the CE was shared with relevant railway manufacturers from the
CONNECTA project. Several meetings took place in order to adjust the design of the CE to
the requirements of the Simulation Framework provided by CONNECTA (Functional and
Electromechanical Simulation Framework). In addition to these coordination tasks, the final
version of this document was reviewed by CONNECTA partners.

Within the scope of SAFE4RAIL project, several meetings among USIE, TUV and IKL were
held in order to discuss the railway functional safety when using the simulation framework.
Finally, it was decided that the argument for proving that the simulation framework is safe to
use for validation, that is, a qualification of the framework, was not foresseen in WP3 due to
unreachable sophistication within this project. In any case, in T3.1 a SotA of current
standards for tools conducting validation and verification tasks together with requirements,
mainly based on the EN50128:2011 standard, were addressed by IKL and TUV.

SAFE4RAIL D3.2 Page 84 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

L]

————
T

Chapter 10 List of Abbreviations

CAN Controller Area Network

CE Communication Emulator

CEc Communication Emulator, Central

CEsg Communication Emulator, Simulation Bridge
CETS Communication Emulator Tool Set

CETSc Communication Emulator Tool Set, Central
CETSnaster Communication Emulator Tool Set, Master
CETSsjave Communication Emulator Tool Set, Slave
CS Consist Switch

ECN Ethernet Consist Network

ECS Ethernet Consist Switch

ED End Device

ETB Ethernet Train Backbone

ETBN Ethernet Train Backbone Node

FMI Functinal Mock-up Interface

FOM Federation Object Model

GPL General Public License

HIL Hardware In The Loop

HLA High Level Architecture

HMI Human Machine Interface

IP Internet Protocol

IPSec Internet Protocol Security

I/O Input/Output

LAN Local Area Network

SAFE4RAIL D3.2

Page 85 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

L]

————
T

LCN Local Communication Network
L2TP Layer Two Tunnelling Protocol
MVB Multifunction Vehicle Bus

OMT Object Model Template

PPTP Point-to-Point Tunneling Protocol
RTI Run-Time Infrastructure

SB Simulation Bridge

SFTS Simulation Framework Tool Set
SIL Software In The Loop

SSL Secure Socket Layer

SSTP Secure Socket Tunnelling Protocol
1T Test Automation Tool

TBN Train Backbone Node

TCMS Train Control and Monitoring System
TCU Train Control Unit

ul User Interface

UML Unified Modelling Language

VCU Vehicle Control Unit

VPN Virtual Private Network

XML Extensible Markup Language

Table 4: List of Abbreviations

SAFE4RAIL D3.2

Page 86 of 107

D3.2 — Report on Design of TCMS Distributed ==t

Simulation Framework Concept =201 O et =

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

Chapter 11 Bibliography

Safe4RAIL, “Report on final requirements, D3.6.”

CONNECTA, “Specification of the Simulation Framework and Train Virtualisation,
D6.2.”

Safe4RAIL, “Report on State-of-the-Art Analysis and Initial Requirements for the
Distributed Simulation Framework, D3.1.”

M. U. Awais, P. Palensky, A. Elsheikh, E. Widl, and S. Matthias, “The high level
architecture RT1 as a master to the functional mock-up interface components,” in 2013
International Conference on Computing, Networking and Communications, ICNC
2013, 2013.

J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly, “THE DoD HIGH LEVEL
ARCHITECTURE: AN UPDATE.”

R. M. Fujimoto and R. M. Weatherly, “HLA time management and DIS,” 15th Work.
Stand. Interoperability Distrib. Simulations, pp. 615-628, 1996.

“IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)--
Federate Interface Specificationt.” pp. 1-378, 2010.

T. Blochwitz et al., “The Functional Mockup Interface for Tool independent Exchange
of Simulation Models.”

“Functional Mock-up Interface.” [Online]. Available: https://fmi-standard.org/.

T. Blockwitz et al., “Functional Mockup Interface 2.0: The Standard for Tool
independent Exchange of Simulation Models,” pp. 173-184, 2012.

T. Blochwitz et al., “Functional Mockup Interface 2.0: The Standard for Tool
independent Exchange of Simulation Models.”

J. Kaur, Aarja and Malhotra, “A survey of network simulation tools,” Wirel. Commun.,
vol. 7, no. 6, pp. 191--194, 2015.

“OPNET Technologies — Network Simulator | Riverbed:
https://www.riverbed.com/es/products/steelcentral/opnet.ntml?redirect=opnet”

“Virtual ~ Private =~ Networking: An Overview.” [Online]. Available:
https://technet.microsoft.com/en-us/library/bb742566.aspx.

Safe4RAIL, “State-of-the-art Document on Drive-by-Data, D1.1.”

SAFE4RAIL D3.2 Page 87 of 107

D3.2 — Report on Design of TCMS Distributed ==t
Simulation Framework Concept -

————
T

[16] “IEC 61375-2-5:2014 Standard.” 2014.
[17] “IEC 61375-3-4:2014 Standard.” 2014.

SAFE4RAIL D3.2 Page 88 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept m‘--‘l:_“.ﬁ

Chapter 12 Appendix 1. Sequence diagrams

SAFE4RAIL D3.2 Page 89 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept mm‘l.lm

sdUC.1 S1 Configure /]
CETS (master) Central PC. CE (s8) CETS (save)
(from Actors) Ul sibsystem Configurator “Communication “Communication Configurator Monitoring Configuration Co-simulation “Wiapper subsystem Co-simulation Delay subsystem “Communication Configurator
aibsysen sibsysem sibsysem sibsysem subsystem (central) subsystem wbsystem ubsystem subsystem absystem aibsysen sibsysem subsysem
eer (@isibuted) (@isributed) (@istributed) (centralized) (@isibuted) (@isibuted) (@istributed) (@istributed)
Configure(y int
—Configure@ int_,
Show_File_Selection)
aShovFile_Selection) |
Select_Conf_File(cont_file_name): int
T ST configurecont_file_name: int
Open_Connecion: int
Send_soclet(configure, config_file, CenalPC): int
e
Socket_message(configure, config_fle):int
itk el S
Configure(config_file): int
Configure(conig_file) int
onfigure(config,_flel i
Configure(confi
Configure(config_file): int
|
Configure(config_fie): int
| Configureconig_filekint
Configured() int
Request_Connection(CE_ID[], CETS_ID(); inr#——————— —
PN —
Send_sodlel(Conig_file_requesi, CETS_ID[): int
(Qnita.flerequest Cf
Reques. int Request_Connection(: int
<] Open_connection(; int Open_Connection(: int
Socket file_request) int
Config_ile_requesi(: in
Send_soclet(Configure, config_file, CentalPC):int
Socket (Configure, config_fle): int
Configure(config_file) int
Configure(config._file) I
Send_soclet(Set_CE, CE_ID[), CETS_ID): int
-
lo0p
forall CETS and CE] | alt Socket_message(Set_CE, CE_ID[): int
[slave] Set_CE(CE_ID[) int
sovet contig ey int Send_socleiConfigure. config_file, CentalPC):int
{Master] Socket_message(Set_CE, CE_ID[): int
Iog-mes=age(Set CF, CF_ID)
Set_CE(CE_ID[): int
Send_soclet(Configure, config_file, CE D[], CentralPC): int
scontoure, comfe e
Socket_message(Configure, config_file,CE_ID{): int
Configure(config_file. CE_IDJ)):int
Send_socket(Configure, config_fle, CE_ID[): int
Socket config_fle):int
Configure(config_fie):inj
file) ing_
Send_socket(HLA_init: int
Socket_message(HLA init) int
HLA_init): int
Send_soclet(Configured, CentralPC):int
e e
Socket_message(Configured): int
Configured(int
| Configuredyiint
Send_spdlet(Configured, CETS_master):int
po sl bbbl
Configured(int Configured(int Socket_message(Configure): int
et mesage(Contgurey Iy
Configured) i —

Figure 47. Use case 1. Scenario 1.

SAFE4RAIL D3.2 Page 90 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept m“‘l:_“_—m

sd U.C.1 S2 Configure /

CETS (master) Central PC
(from Actors) :Ul subsystem :Configurator :Communication :Communication :Configurator
subsystem subsystem subsystem subsystem
User (distributed)
Configure(): int
gureQ) >
Show_File_Selection
< _File_ 0

Select_Conf_File(conf_file_name): int
P Configure(conf_file_name): int

Open_Connection(): int
—_—

Send_socket(configure, config_file, CentralPC): int
—>

Socket_message(configure, config_file): int

Configure(config_file:: int

Send_socket(Error, master_already_design, CETS_master): int

Socket_message(Error, master_already_assigned): int

Error(master_already_assigned): int
-

Error(master_already_assigned):
-g—int

‘Erro r(master_already_assigned)

Figure 48. Use case 1. Scenario 2.

SAFE4RAIL D3.2 Page 91 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept m“‘l:_“_—m

sd U.C.1 S3 Configure/

CETS (master) Central PC
(from Actors) :Ul subsystem :Configurator :Communication :Communication :Configurator
subsystem subsystem subsystem subsystem
User (distributed)
Configure(): int
gureQ) >
Show_File_Selection
< _File_ 0

Select_Conf_File(conf_file_name): int
P Configure(conf_file_name): int

Open_Connection(): int
=

Send_socket(configure, config_file, CentralPC): int
_—

Socket_message(configure, config_file): int

Configure(config_file:: int

Send_socket(Error, config_file_error, CETS_master): int
44—

Socketﬁwemge(Error, config_file_error): int

Errorsconfig_file_error): int

Error(config_file_error): int
-

Error(config_file_error)

-«

Figure 49. Use case 1. Scenario 3.

SAFE4RAIL D3.2 Page 92 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

L]
R
e O

—

S1 Reconfigure
CETS (master) Central PC CE (SB)
(from Actors) ul :C :C i pet icati :Confi :Configurati fe :Network G C :Wrapper :Co-simulation
subsystem subsystem subsystem subsystem subsystem subsystem subsystem
(distributed) (centralized) (distributed)
User
Reconfigure():
qured: g
int
Show_File_Selection()
R NTTE STRCon
Select_Conf_File(reconf_file_name): int
Reconfigure(reconf_file_name): int
e
Check_connection(zint
Send_socket(reconfigure, reconf_file): int
ket(reconfigure, recon
Socket_message(reconfigure, cunthMe)‘ int
Configure(reconfig_|f
int
Configure(reconf_file): int
3
Configure(reconf_file): int
L
C f_file): int
Configured(): int
-
Send_socket(reconf_file, CE_ID[)): int
-
Check_connection(): int
P)
Socket_r t_file): int -
>
Configure(reconf_file): int
c _file): int -
< Send_socket(HLA_init, CentralPC): int
. Socket_ A_init): int
<
HLA_init(: int -
L gl
Send_socket(Configured, CentralPC): int
B
- Socket_i nfigured): int
Configured(): int
Send_socket(Configured, CETS_master): int
Socket_message(Configured): int
e e e 1
Configured(): int
Configured(y: int | T
Configured

Figure 50. Use case 2. Scenario 1.

SAFE4RAIL D3.2

Page 93 of 107

D3.2 — Report on Design of TCMS Distributed

. X L|.
Simulation Framework Concept =dO C et
sd U.C.2 S2 Reconfigure/
CETS (master) Central PC
(from Actors) :Ul subsystem :Configurator :Communication :Communication :Configurator
subsystem subsystem subsystem subsystem
User (distributed)
Reconfigure():
in? : >
Show_File_Selection
< _File_ 0
Select_Conf_Fil f_fil :))
eect_tont A el(rr:icon N e_name)» Reconfigure(reconf_file_name):
int
Check_connection(): int
—>
Send_socket(reconfigure, reconfig_file, CentralPC): int
—>
Socket_message(reconfigure, reconfh;_file): int
Configure(reconfig_file): int
_—
Send_socket(Error, reconfigure_file_error): int
44—
Socket_mzmge(Error, reconfigure_file_error): int
Error(reconfigure_file_error): int
-
Error(reconfigure_file_error): int
-
E fi fil
< rror(reconfigure_file_error)

Figure 51. Use case 2. Scenario 2.

SAFE4RAIL D3.2 Page 94 of 107

D3.2 — Report on Design of TCMS Distributed —
Simulation Framework Concept Salret RAIL

e — — — — —

sd U.C.3 S1 SFTS commands /

CE1 (SB) Central PC CE2 (SB)
m m
(from Actors) :Co-simulation :Co-simulation :Co-simulation (from Actors)
subsystem subsystem subsystem
Simulation Framework (@i nuite) (it) (CISHERED) W ED, VCU, HMI, /0
Boards

Toolset
I I
Command_SFTS(): int!
e
>
Interaction_produced(command_SFTS): int

|
|
1

!	

§ |
Send_interaction(command_SFTS): int |

|

|

|

|

|

|

|

! |
Interaction_message(command_SFTS): int |
|

Interaction ﬁroduced(commandTSFTS): int

Send_interaction(command_SFTS): int

Interaction_message(command_SFTS): int |
»
[hal |

I
I
I
|
|
I
I
I
|
|
I
I
I
|
|
I
I
I
Interaction_subscribers(command_SFTS): int |
|
I
I

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'
=

Interaction_wrapper(command_SFTS): int
I

I
Interaction_wrapper(command_SFTS): int

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Interaction_wrapper(command_SFTS): int |
|
|

Command_SFTS|

Figure 52. Use case 3. Scenario 1.

SAFE4RAIL D3.2 Page 95 of 107

e — — — — —

D3.2 — Report on Design of TCMS Distributed —
Simulation Framework Concept Salret RAIL

sd U.C.4 S1 Ethernet interaction/

CE1 (SB) Central PC CE2 (SB)
m m
(from Actors) :Co-simulation :Co-simulation :Co-simulation (from Actors)
subsystem subsystem subsystem
Real ED, VCU, HMI. 1/0 (distributed) (centralized) (distributed) SW ED, VCU, HMI. /0
Boards Boards

Y

I I

| Ethernet_frame(): int; |
>

L I

Interaction_produced(ethernet_frame): int

|
eraction(ethernet_frame): int

I I

| |

I I

I I

| |

Send_int : :
|

I

Interaction_meamge(ethernet_fra}me): int

I
Interaction_produced(ethemet_frame): int

I
|
I
I
|
I
|
|
I
|
I
I
Send_interaction(ethernet_frame): int 1
|
|
I
I

Interaction_subscribers(ethernet_frame): int
I

I
|
I
I
|
I
|
|
I
|
I
I
|
I
|
|
I
|
I
I
Interaction_wrapper(ethemet_frame): int 1

I
|
I
I
|
I
|
|
I
|
I
I
|
I
|
|
I
|
I
I
|
I
_wrapper(ethernet_f‘rame): int }
I
|

Interaction_wrapper(ethemet_frame): int

Ethernet_frame|

Figure 53. Use case 4. Scenario 1.

SAFE4RAIL D3.2 Page 96 of 107

D3.2 — Report on Design of TCMS Distributed —
Simulation Framework Concept Salret RAIL

e — — — — —

sd U.C5S11/0 interaction/

CE1 (SB) Central PC CE2 (SB)
(from Actors) :Co-simulation :Co-simulation :Co-simulation (from Actors)
subsystem subsystem subsystem
Real ED, VCU, HMI, 1/0 (distributed) (centralized) (distributed) SW ED, VCU, HMI, /0
Boards T Boards
| | | |
! 1/0(): int ! !
0 s I

|
|
|
Interaction_produced(i/o): int |
|
|

[

|

I

|

I

|
end_interaction(i/o): int |

|
|
|
|
|
|
|
Interaction_message(i/o): int }
I

Interaction_produced(i/o): int

Send_interaction(i/o): int

ion_wrapper(i/o): int

Inte'action_wrageersilo): int

Interaction_wrapper(i/o);: int
\' 1100

Figure 54. Use case 5. Scenario 1.

SAFE4RAIL D3.2 Page 97 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

L]
R
e O

sd U.C.6 S1 Monitoring start /

Monitoring_start(CE_ID, has file): int
—_—

Monitoring_start(CE_ID, has file): int
=

alt

[Moniotring]

Monitoring_data(ethemet_frame, CE_ID): int
|

Monitoring_data(ethemet_frame, CE_ID): int
-
Monitoimﬁ_data(ethernet_frame, CE_ID)

[Measurements]

CETS (master) Central PC
(from Actors) :Ul sub :Monitoring He! :C ication :Monitoring
sub sub: sub (central)
User d) i d) (distributed)

Send_socket(Monitoring_start, CE_ID, has_file, CentralPC): int
= '

Socket_message(Monitoring_start, CE_ID, has file, CentralPC): int
—_——

Monitoring_start(CE_ID, has_file): int
it

:Co

CE (SB)

Send_socket(Monitoring_start, CE_ID, has file, CE_ID): int
-

J—

ing ‘Wrapper (from Actors)

(distributed)

Socket_message(Monitoring_start, CE_ID, has file): int
>

L

Real ED, VCU, HMI, I/O

Boards

Monitoring_start(CE_ID, has_file): int

Ethemet_frame(): int

Interaction_produced(ethernet_frame): int
7

Send_socket(monitoring_data, ethernet_frame, CE_ID, CentralPC): int
-

Socket_m‘esage(monitoring_data. ethernet_frame,CE_ID): int
il

Monitoring_data(ethemet_frame,CE_ID): int
P

4

Socket_message(monitoring_data, ethernet_frame, CE_ID): int
-

Send_socket(monitoring_data, ethemet_frame, CE_ID, CETS_master): int

Monitoring_data(ethemnet_frame): int

Figure 55. Use case 6. Scenario 1.

SAFE4RAIL D3.2

Page 98 of 107

D3.2 — Report on Design of TCMS Distributed C
Simulation Framework Concept m“‘l:_“_—m

sd U.C.6 S2 Monitoring start/

CETS (slave) CE (SB)
(from Actors) :Ul subsystem :Monitoring :Communication :Communication :Monitoring ‘Wrapper (from Actors)
subsystem subsystem subsystem subsystem subsystem
(distributed) (distributed) (distributed)

User Real ED, VCU, HMI, I/O

Boards
Monitoring_start(CE_ID, has file): int
Monitoring_start(CE_ID, has_file): int
——
Send_socket(Monitoring_start, CE_ID, has file, CentralPC): int
Socket_message(Monitoring_start, CE_ID, has_file, CE_ID): int

Monitori ng_starth_lD, has_file): int

Ethernet_frame(): int

Interaction_produced(ethermet_frame): int
4

alt
Send_socket(monitoring_data, ethernet_frame, CE_ID, CentralPC): int
4

[Monitoring]

Socket_message(monitoring_data, ethernet_frame,CETS_ID): int
————
Monitoring_data(ethernet_frame, CE_ID): int
4
Monitoring_data(ethernet_frame, CE_ID): int
4

Monitoimg_data(ethernet_frame, CE_ID)
4

[Measurements]
Store_data(ethermet_frame): int

o]

Figure 56. Use case 6. Scenario 2.

SAFE4RAIL D3.2 Page 99 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

SarfettRAIL

e — — — — —

sd U.C.7 S1 Monitoring stop/

e
(from Actors)

User
|
|

CETS (master)

:Ul subsystem

Central PC

CE (SB)

|
Monitoring_stop(CE_ID):

1
T
int
1

L

M

o

nitoring_stop(CE_ID): int

Send_socket(Monitoring_stop, CE_ID, CentralPC): int

Socket_message(Monitoring_stop, 'CE_ID): int

Monitoring_stop(CE_ID): int

Send_sockethonitoring_stop, CE_ID, CE_ID): int

Socket_message(Monitoring_stop, CE_ID): int

| —— — —

Monitoring_stop(CE_ID): int

—

Figure 57. Use case 7. Scenario 1.

SAFE4RAIL D3.2

Page 100 of 107

D3.2 — Report on Design of TCMS Distributed ml Rq I L

Simulation Framework Concept =201 8 le——————

sd U.C.7 S2 Monitoring stop/

CETS (master) CE (SB)
)
(from Actors) :Ul subsystem
User
|

1

| 1

| 1
Monitoring_stop(CE_ID): int
Monitoring_stop(CE_ID): int

Send_socket(Monitoring_stop, CE_ID, CE_ID): int

Socket_message(Monitoring_stop, CE_ID): int

Monitoring_stop(CE_ID): int

"

i

Figure 58. Use case 7. Scenario 2.

SAFE4RAIL D3.2 Page 101 of 107

D3.2 — Report on Design of TCMS Distributed

. X L|.
Simulation Framework Concept =dO C et
sd U.C.8 S1 Configuration data request/
CETS (master) Central PC
(from Actors) :Ul subsystem :Configurator :Communication :Communication :Configurator
subsystem subsystem subsystem subsystem
User (distributed)
Config_request
(:int >
Send_socket(Config_request, CentralPC): int
Ll
Socket_message(Config_request): int
>
Config_request(): int
—_———
Send_socket(Config_file, config_file, CETS_master): int
44—
Socket_message(Config_file, config_file): int
-
< Config_file(config_file): int
< Config_file(config_file)

Figure 59. Use case 8. Scenario 1.

SAFE4RAIL D3.2 Page 102 of 107

D3.2 — Report on Design of TCMS Distributed

SarfettRAIL

Simulation Framework Concept

H
a (SR Y
g
: £
' H
T . g <
i g <
3 ! g g
0 ; 8 £
jm . o 2
© 2
3
&
! Fa'y
' H
. &
Al i
|4 :
2l | £ :
g |3 m
a | g i
g g m
2 iy H— B s R e R e B i
S :
i g |
a £ 2 :
8 i & .
- - S -l - L : - ---
8| & E |
2 8 :
8] :
< g :
g g :
3 8 :
- - - |- 5
<
2
2 j
8 :
: 8
. 3| POUR: §
! 3 5 2
: é 8l °
\\\\\\\\\\\\\\\\\\\\ e T i B e
s i
F |
e Bl Fool 1 I
23 3| o
- = 4
2 z £ s | = R
= 2 H H
£ 8 g
= il .
2e% E '
<53 o .
T~ E] S 1 R | B = e | B Al A I
72E H 1
78 i i =l © '
8”& 3 3 3| g 8
19 E 3 gl = 3l
B é @ 2 s °
2 g 5 3 H
3 HIE -
3| g @ .
£ :
\\\\\\\\\\\\\\\\\\\ s
< o :
- g H .
£ 3 @ : £
5 : =
' :
wwwwwwwwww @ e e A M (R S [P
2 :
o N o
] = CE 3 jm
£ g L |]
= I -1 =] 51
u
g s} - g 2
a s - g gl 5
& v 1@ m
\\\\\\\\\ 2 Y 5 - -
£ 5 2 : M
= E < ; H
2 ; i -
8 & m_ : 2 E
w g . B
£ :]
g H ” g
g 5 : 3
3 £ : i
S :
& g ! g
\\\\\\\\\\\\\\\\\\\\\ ¢ Y A IS S
g i 3
4 : a
8 = i @
é 5 !
3 :
g : _
] z
£ E
5 g
wwwwwww g i Bt el Sl | E
3= 2 | g
o ' 5
5 39 : g
g JE = :
iz H 5 ,
7 € ”
5 :
g :
\\\\\\\ s et e T e o ST -
d i
2 .
£ B :
= 2 :
. g :
g .
c :
P S S I I
3 = '
3 B :
E :
E s : 5
< : H]
= 2| ! g
] = i]
H 5 ! 3
7 - g :
g 5 @ H K !
e g 12 it i i ittt s Attt Ry
8 :
s = .
£ 2 Jm '
M E :
8 C L
= @
al ® @ 'z
HEEE 8

Figure 60. Use case 9. Scenario 1.

Page 103 of 107

SAFE4RAIL D3.2

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

SarfettRAIL

e — — — — —

sd U.C.10 S1 Fault injection start/

m
(from Actors)

User
|
|
|
|

CETS (dave)

:Ul subsystem

Central PC

:Co-simulation
subsystem
(distributed)

CE (SB)

m
(from Actors)

Real ED, VCU, HMI, I/O
Boards

Fault_injection(CE_ID, Fault type): int

Fault_i

jection(CE_ID, Fault_type): int

Send_socket(Fault_injection, CE_ID, ;Fault_type): int

Socket_message(Fault_injection, CE_ID, Fault_type): int

I
Fault_injection(CE_ID, Fault_type): int

Send_socket(Fault_injection, CE_ID, Fault_type): int

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

i
Socket_message(Fault_injection, CE_ID, Fault_type): int
>

T
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Fault_injection(Fault_type): int
|

Interaction_subscribers(ethernet_frame):

Interacti

et frame): int

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"
|
|
|
|
|
|
|

|
hemet fréme): int

T
|
I
I
I
I
I
I
I
|
|
I
I
I
I
I
I
|
|
I
I
I
I
I
I
I
|
|
I
I
I
I
I
I
|
|
I
I
I
I
I
Inject_fault(): int |
I
|
|

I
(ethernet_frame): int

Ethemet_frame()

Figure 61. Use case 10. Scenario 1.

SAFE4RAIL D3.2

Page 104 of 107

D3.2 — Report on Design of TCMS Distributed

. X L]
Simulation Framework Concept m“‘l‘m
sd U.C.10 S2 Fault injection start/
CETS (slave) CE (SB)
(from Actors) :Ul subsystem :Configurator :Communication :Communication :Co-simulation :Delay subsystem :Fault injection ‘Wrapper (from Actors)
subsystem subsystem subsystem subsystem subsystem subsystem
User (distributed) (distributed) (distributed) (distributed) Real ED, VCU, HMI, 1/0
Boards
Fault_injection(CE_ID,
Fault_type): int
Fault_injection(CE_ID, Fault_type): int
e
Send_socket(Fault_injection, CE_ID, Fault_type): int
=
Socket_message(Fault_injection, CE_ID, F‘aultftype): int
L
Fault_injection -
(Fault_type): int gl
Interaction_subscribers|
(ethernet_frame): int
-
Interaction_wrapper(ethernet_frame): int
—_—
Interaction_wrapper(ethernet_frame): int
—_——
; Inject_fault(): int
Interaction_wrapper(ethernet frame): int
L
Ethernet_frame() >

Figure 62. Use case 10. Scenario 2.

SAFE4RAIL D3.2 Page 105 of 107

D3.2 — Report on Design of TCMS Distributed

Simulation Framework Concept

SarfettRAIL

e — — — — —

sd U.C. 11 S1 Fault injection stop/

CETS (dave)

~
(from Actors)

User

:Ul subsystem

Central PC

CE (SB)

Fault_reset(CE_ID,
Fault_type):

int,

7]

Fault_reset(CE_ID, Fault, tﬁp'e): int

Send_socket(Fault_reset, CE_ID, Fault_type): int

Socket_message(Fault_reset, CE_ID, Fault_type): int

Fault_reset(CE_ID, Fault qpe): int

Send_socket(Fault_reset, CE_ID,

Fault_type): int

Socl(et_mesage(FauIt_i'eset, CE_ID, Fault_typel: int

Fault_reset(FauIt_typez: int

Figure 63. Use case 11. Scenario 1.

SAFE4RAIL D3.2

Page 106 of 107

D3.2 — Report on Design of TCMS Distributed
Simulation Framework Concept

L]
R
e O

sd U.C. 11 S2 Fault injection stop/

CETS (dlave)

(from Actors) :Ul subsystem :Configurator
subsystem
User (distributed)

Fault_reset(CE_ID, Fault_type): int
-

Fault_reset(CE_ID, Fault txpe): int

:Communication

subsystem
(distributed)

Send_socket(Fault_reset, CE_ID, Fault_type): int

CE (SB)

:Communication :Fault injection

subsystem subsystem
(distributed)

Socket_message(Fault_reset, CE_ID, Fglt_type): int

Fault_reset(Fault_type): int
>

Figure 64. Use case 11. Scenario 2.

SAFE4RAIL D3.2

Page 107 of 107

