

D3.1 – Report on State-of-the-Art Analysis and
Initial Requirements for the Distributed Simulation

Framework

Project number: 730830

Project acronym: Safe4RAIL

Project title:
Safe4RAIL: SAFE architecture for Robust

distributed Application Integration in roLling stock

Start date of the project: 1st of October, 2016

Duration: 24 months

Programme: H2020-S2RJU-OC-2016-01-2

Deliverable type: Report (R)

Deliverable reference number: ICT-730830 / D3.1 / 1.2

Work package WP 3

Due date: December 2016 – M03

Actual submission date: 30th of December, 2016

Responsible organisation: University of Siegen

Editor: Tobias Pieper

Dissemination level: Public

Revision: 1.3

Abstract:

Describes the SOTA of distributed simulation
frameworks including existing solutions from other
domains. In addition, the deliverable contains the
initial requirements for the concept of the S4R
simulation and validation framework.

Keywords: Distributed co-simulation, HIL, SIL, T2G

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
730830.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page II

Editor

University of Siegen, SIE

Contributors/Reviewer (ordered according to beneficiary numbers)

TTTech Computertechnik AG, TTT

IKERLAN, S. Coop, IKL

UniControls A.S., UNI

Technikon Forschungs- und Planungsgesellschaft mbH, TEC

TÜV SÜD Rail GmbH, TÜV

IAV GmbH Ingenieurgesellschaft Auto und Verkehr, IAV

IFSTTAR – Institut Francais des Sciences et Technologies des Transport, de
l’Amenagement et des Reseaux, IFS

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The content of this document reflects
only the author’s view – the Joint Undertaking is not responsible for any use that may be
made of the information it contains. The users use the information at their sole risk and
liability.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page III

Executive Summary

Integrating and testing railway components are crucial steps in the development progress.
Hence, one main objective of the ongoing European research project Safe4RAIL lies in the
concept design and the proof-of-concept implementation of a distributed simulation and
validation framework. It aims on a network-centric simulation at system level providing a
time-accurate simulation of in-train communication networks with co-simulated end-systems.
Those end-systems are securely coupled using public communication networks. Using the
framework can radically improve the integration and testing process compared to today’s
practice.

In this deliverable, the state-of-the-art in distributed simulation frameworks and other
solutions of interest is presented. Such solutions refer to software- and hardware-in-the-loop
simulation and the simulation of wireless railway networks. Furthermore, different
approaches for the evaluation of the framework are presented as well as test automation and
fault-injection techniques. For each topic, the deliverable defines design goals for following
tasks in the project and it points out the research gap to the state-of-the-art. The design
goals have to be finalized to requirements in the following months.

There are already various approaches available that can be utilized during the SAFE4RAIL
project. The combination of the Functional Mock-up Interface (FMI) and High Level
Architecture (HLA) standards is a promising approach for the co-simulation of different
simulation tools since FMI is already widely used and supports various simulation tools.
Furthermore, there are solutions for the inclusion of Software- and Hardware-In-The-Loop
(SIL/HIL) or the injection of faults into the simulation. HIL and SIL simulation are used to test
the communication between mobile communication gateways and peers in the train-to-
ground communication.

However, there are major research gaps the existing solutions do not solve yet. For example,
the interconnection of simulation tools introduces delays which are inapplicable in providing
real-time behavior for HIL simulation. The universal applicability of the plant models for user
interaction during tests is another high requirement. Further requirements are related to
timing, configuration, applicability and safety in the co-simulation framework. Those gaps and
the definition of the final requirements have to be solved during the next months.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page IV

Contents

List of Figures ... VII

List of Tables ... VIII

Chapter 1 Introduction ... 1

Chapter 2 SIL and HIL frameworks ... 2

2.1 Test Cases ... 2

2.1.1 System Level ... 2

2.1.2 Function development – using MIL / SIL .. 3

2.1.3 Plant driver development – using MIL / SIL / HIL .. 4

2.1.4 Software integration test .. 5

2.1.5 COM layer test ... 6

2.1.6 COM configuration test .. 7

2.1.7 HIL - ECU test .. 8

2.1.8 System function exploration ... 9

2.2 Design goals for SIL and HIL frameworks .. 10

2.2.1 General assumptions ..10

2.2.2 Standard interfaces and protocols for HIL ...11

2.2.3 More interface design goals for HIL in based on common proprietary solutions of
OEMs 12

2.2.4 General design goals for simulation framework ...13

2.2.5 Timing design goals ..16

2.3 SIL frameworks .. 16

2.3.1 Railway ...16

2.3.2 Automotive ..16

2.3.3 Distributed SIL environments ..17

2.4 HIL frameworks .. 19

2.4.1 Railway ...19

2.4.2 Automotive ..20

2.4.3 Other domains ..20

2.4.4 Distributed HIL frameworks ...21

2.5 Research gap for state-of-the-art ... 23

Chapter 3 Simulation of wireless railway networks ... 24

3.1 Design goals for T2G test environment .. 24

3.1.1 Quality of Service (QoS) testing of TCMS T2G interface24

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page V

3.1.2 Test environment for the testing of the TCMS T2G interface focusing on the ground
peer and functionality testing ..26

3.2 Simulation of T2G wireless communication networks 28

3.3 Research gap for state-of-the-art ... 31

Chapter 4 Distributed simulation frameworks and co-simulation 33

4.1 Design goals for the distributed co-simulation framework 33

4.1.1 Design goals for co-simulation ..33

4.1.2 Additional design goals for distributed co-simulation ...34

4.1.3 Design goals for applicability ...34

4.1.4 Timing design goals ..35

4.1.5 Configuration design goals ..35

4.1.6 Security design goals ..36

4.2 Common aspects related to co-simulation ... 36

4.2.1 The mechanism of co-simulation ...36

4.2.2 Co-simulation in heterogeneous environments..36

4.2.3 Synchronization mechanisms between simulation tools ..37

4.3 Functional mock-up interface and High Level Architecture 39

4.3.1 The Functional mock-up Interface ...39

4.3.2 The High Level Architecture ..41

4.3.3 Combinations of FMI and the HLA ..41

4.4 Internet-based co-simulation .. 43

4.4.1 Co-simulation via TCP/IP sockets ...43

4.4.2 Distributed co-simulation frameworks ..44

4.5 Security mechanisms applicable for secure communication in distributed
validation frameworks ... 46

4.5.1 Data Integrity and Cryptographic Hash Functions ...46

4.5.2 Private-Key Cryptography ...46

4.5.3 Public-Key Cryptography ..47

4.6 Research gap for state-of-the-art ... 47

Chapter 5 Safety ... 49

5.1 Initial Safety Requirements .. 49

5.1.1 Support for safety application validation ..49

5.1.2 Qualification of the distributed simulation and validation framework49

5.2 State-of-the-art ... 50

5.2.1 Tool Categorization ...50

5.2.2 Requirements on Tool Qualification ..51

5.2.3 Tool Usage Requirements...53

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page VI

5.3 Research gap for state-of-the-art ... 54

Chapter 6 Test operation and test automation .. 55

6.1 Design goals for test operation and test automation 55

6.1.1 Design goals for the connection of the test automation ...55

6.1.2 Design goals solved by the test tool framework ...55

6.1.3 Execution steps for test automation ..56

6.2 State-of-the-art of test operation and test automation 57

6.3 Research gaps for state-of-the-art ... 57

Chapter 7 Evaluation of extra-functional properties 59

7.1 Design goals for evaluation of extra-functional properties 59

7.2 Introduction to fault-injection .. 60

7.3 Timing and reliability evaluation by fault-injection .. 60

7.3.1 Hardware implemented fault-injection ...60

7.3.2 Software implemented fault-injection ...60

7.3.3 Simulation based fault-injection ...61

7.3.4 Fault-injection tools ...62

7.4 Research gap for state-of-the-art ... 64

Chapter 8 Summary and conclusion ... 65

Chapter 9 List of Abbreviations .. 66

Chapter 10 Bibliography ... 72

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page VII

List of Figures

Figure 2.1 TCMS controller example ... 2

Figure 2.2 Function development setup ... 3

Figure 2.3 Function test simulation setup .. 4

Figure 2.4 ECU Software integration simualtion setup ... 5

Figure 2.5 COM layer test simulation ... 6

Figure 2.6 COM configuration test setup ... 7

Figure 2.7 HIL ECU test setup ... 8

Figure 2.8 System function exploration setup .. 9

Figure 2.9 - FMI interface for HIL simulation adapter ..12

Figure 2.10 Two approaches for realization of the HIL..19

Figure 2.11 Overview of ASAM Interface Standards [50] ..20

Figure 3.1 - T2G system components and interfaces ...26

Figure 3.2 - Test setup for MCG tests ...27

Figure 3.3 - Test setup for GCG tests ...28

Figure 3.4 - Test setup for T2G system integration tests ..28

Figure 3.5 - Test setup for integration tests of distributed application28

Figure 3.6 T2G and TCMS networks in a train. ...31

Figure 3.7. Simulation environment for MCG tests. ..32

Figure 6.1 Desired interoperability of test automation tools and test execution platforms
[from 82] ...57

file:///C:/Users/muenzer/Documents/M18M/_SVN/SAFE4RAIL%20SVN/05-Work-Packages/WP3/Deliverables_WP3/D3.1/Safe4RAIL-D3.1-State-of-the-Art-Distributed-Simulation-Framework-PU-M3-v1.2.doc%23_Toc12271315
file:///C:/Users/muenzer/Documents/M18M/_SVN/SAFE4RAIL%20SVN/05-Work-Packages/WP3/Deliverables_WP3/D3.1/Safe4RAIL-D3.1-State-of-the-Art-Distributed-Simulation-Framework-PU-M3-v1.2.doc%23_Toc12271316
file:///C:/Users/muenzer/Documents/M18M/_SVN/SAFE4RAIL%20SVN/05-Work-Packages/WP3/Deliverables_WP3/D3.1/Safe4RAIL-D3.1-State-of-the-Art-Distributed-Simulation-Framework-PU-M3-v1.2.doc%23_Toc12271317

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page VIII

List of Tables

Table 3-1 QoS parameters of the T2G functions. ...25

Table 3-2 Research works of Train to Ground (T2G) simulations ...30

Table 5-1 Common Tool Qualification Requirements..51

Table 9-1 List of Abbreviations ...66

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 1 of 79

Chapter 1 Introduction

Integration of railway components and their testing are crucial development steps. One
objective of the ongoing European research project Safe4RAIL lies in the concept design and
a proof-of-concept implementation of a distributed simulation and validation framework.
Using this framework, the integration and testing process can be radically improved
compared to the today’s practice.

The distributed simulation and validation framework will support Software- and Hardware-In-
The-Loop (SIL/HIL) testing as well as the secure coupling of simulators and physical systems
via public communication networks. The goal is a network-centric simulation at system level
providing a time-accurate simulation of in-train communication networks with co-simulated
end-systems. As a consequence, train manufacturers and suppliers will be able to perform
an early validation before a complete train-system is available.

This deliverable presents a State-of-the-Art (SotA) analysis related to the topics of the
distributed simulation framework and other solutions of interest. For each topic, it defines
design goals for the following tasks in the work package and outlines the research gap to the
state-of-the-art. In the following months, those design goals have to be finalized to
requirements for the distributed simulation framework. The structure of the deliverable is
organized as follows:

• Chapter 2 deals with available SIL and HIL frameworks from various domains like
railway, automotive or distributed SIL/HIL testing. It defines standard protocols and
interfaces and general requirements for HIL testing as well as timing requirements for
both techniques.

• Chapter 3 gives an overview on Train-to-Ground (T2G) wireless communication
networks and defines requirements for the Quality of Service testing and the test
environment of the Train Control and Management System (TCMS) T2G interface.

• Chapter 4 continues with distributed simulation frameworks and co-simulation.
Additionally, it analyzes the state-of-the-art of security mechanisms for the
communication via public communication networks. The requirements defined in this
section concentrate on the (distributed) co-simulation, timing, applicability,
configuration as well as security.

• Chapter 5 deals with the state-of-the-art of safety evaluation concepts. It defines
requirements for certification and the support of a safety-case.

• Chapter 6 presents tools for test operation and test automation and defines the
related requirements to that topic.

• Chapter 7 finishes with an overview on existing fault-injection mechanisms, tools and
requirements to evaluate extra-functional properties.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 2 of 79

Chapter 2 SIL and HIL frameworks

2.1 Test Cases

The main usage of testing with SIL and HIL is supporting system integration and verification
of the implemented features.

The following paragraphs will present typical test cases for SIL and HIL simulation. Their
explanation will facilitate the understanding of the impact the HIL Simulation Framework
(HILSF) will have. These test cases are not TCMS specific but common in industrial
development of complex software controlled systems.

2.1.1 System Level

The detailed discussion of the different test cases requires a short definition of
decomposition of the TCMS.

• TCMS groups all control devices controlling the physics of a rail vehicle.

• The term system in this context refers to the delivery item of a supplier of the rail
vehicle OEM (Original Equipment Manufacturer). The delivery item consists of a
controller – by itself part of the TCMS – and its controlled part of the physics of the
rail vehicle, e.g. brakes or propulsion.

For easier understanding the following artificial, an abstract system can be used. It shows a
Controller containing two functions for the control of rail vehicle propulsion system.

Figure 2.1 TCMS controller example

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 3 of 79

2.1.2 Function development – using MIL / SIL

The focus in the function development using Model-In-The-Loop (MIL) and SIL lies in the
validation of the algorithm for controlling a subset of the plant physics. Challenges in the
functional development test case are related to modelling and simulation.

Figure 2.2 Function development setup

The model includes an exact representation of the plant behavior to be controlled and each
subsystem shows different timing characteristics (e.g. ranging from 1ms for slip control to
1µs for electric field control).

In this test case, a multi-tool-simulation is required to connect, for example, the function
development tool with an appropriate modeling tool for the plant physics. Furthermore,
simulations are coupled (i.e. each model is a timed model) and the simulation is not executed
in real-time. Instead of using event-based simulation, it is signal-based.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 4 of 79

2.1.3 Plant driver development – using MIL / SIL / HIL

This test case focuses on the development of driver / sensor interfaces appropriately
interfacing the plant. In contrast to the previous case, components are developed
independently from each other as they do not interfere (most often Commercial Off-The-Shelf
(COTS) components).

The model exactly represents the plant behavior and the hardware interface of the controller.
This interface is implemented using specialist tools without a relation to the tool chain for
implementing the controller software.

Similar to the development using MIL and SIL, the simulation is not real-time and signal-
based. Furthermore, simulations are also coupled, i.e. each model is a timed model.

Figure 2.3 Function test simulation
setup

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 5 of 79

2.1.4 Software integration test

The software integration test is performed after the algorithms as software modules onto the
OS with its timing and task-architecture. It checks if the Operating System (OS) configuration
changes the module’s behavior. The modules can be developed independently and by
distributed suppliers. Typically, the integration is a centralized activity of the OEM.

Challenges with respect to modelling are a series function implementation of the controller
and not the model. In addition, a broad spectrum of plant models is required to be integrated.
Each module loses its own timing due to the series function. Only the operating system clock
remains and all modules are executed as run to completion tasks. Due to the very different
nature of the plant models in terms of timing and / or modelling approach, only an abstract
model is used.

If an OS emulation is available, the usage of SIL is possible. Otherwise, HIL is used. Similar
to the other cases, the simulation is signal-based. The timing characteristics suggest not to
distribute the execution of the modules.

Figure 2.4 ECU (Electronic Control
Unit) Software integration simulation

setup

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 6 of 79

2.1.5 Communication (COM) layer test

This test performs a HIL execution of a full validation test sequence for the Ethernet Consist
Network (ECN) protocol implementation. The execution is performed separately for each
controller and typically by the hardware supplier but not the railway manufacturer. The
according reference is the ECN standard, therefore no cooperation is needed.

The model contains a complete implementation of a certified test sequence for the ECN
protocol. In contrast to the previous cases, an event-based simulation is possible. The
simulation is consistent and automatically creates reports for certification purposes.

Figure 2.5 COM layer test simulation

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 7 of 79

2.1.6 COM configuration test

The COM configuration test validates the correct signal routing and communication
supervision of a vehicle-specific ECN configuration. It is executed by the OEM responsible
for the correctness of the ECN network and must be typically performed for each individual
ECN configuration.

In this case, no plant models are required. Moreover, standard-test sequences are
instantiated to test the specific ECN configuration of the vehicle. Again, event-based
simulation is possible and HIL is used established by the producer.

Figure 2.6 COM configuration test setup

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 8 of 79

2.1.7 HIL - ECU test

The focus in this test lies on the validation of the integrated controller functions in the final
hardware. The vehicle manufacturer thereby completely validates the requirements
implementation for all functions using the integrated controller.

Figure 2.7 HIL ECU test setup

Test sequences are derived from abstract requirements and must be detailed to level that
they stimulate the series interfaces of the controller. The set of test cases is fixed, thus plant
models are built to purpose as follows. Testing the functions requires an exact representation
of the corresponding plant behavior. As the different parts of the plant impose a broad
spectrum of properties (e.g. simulation step size), typically not one universal plant model is
used. Instead, each control function group and plant property is a specialized model.

In parallel to the test execution, the test framework must change and instantiate the plant
models addressed by each test sequence. Due to the different plant models, debugging of
problems imposes difficulties, as the same problem must be represented in different test
sequences. This test uses a signal-based simulation.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 9 of 79

2.1.8 System function exploration

Investigating the behavior of a distributed function across multiple controllers is performed in
the system function exploration. For example, a subset of the vehicle functions across all
controllers (e.g. diagnostic function or the driving behavior) is tested.

Figure 2.8 System function exploration setup

Similar and closely coupled functions are implemented in parallel by different teams or
companies. As they implement the same requirements, an early check of the integrated
behavior is mandatory. Further, interoperability of controllers of different vendors can be
assessed only in such integrated setup across controllers. The term “exploration” addresses
the fact that often no standardized test sequences are executed. The tests focus on
debugging claims from the vehicle operation and the behavior’s exploration of the functions
in the context of changed boundary conditions, e.g. a changed operation procedure of the
vehicle.

The plant models exactly represent the chosen aspect of the vehicle function and their
implementation across the different controllers. Therefore, the different plant models must be
suitable for integration. The simulation is executed in SIL or HIL setups. A distributed
execution is promising since it reduces the need for unifying the modelling tools and the
modelling method across companies. The timing requirements on the connection of the
distributed plant models are often more severe than the connection of the controllers. Those
are stiff coupling for the plant and loose coupling for the controller by ECN. Due to the plant
models, a signal-based simulation is performed.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 10 of 79

2.2 Design goals for SIL and HIL frameworks

The design goals defined for SIL and HIL frameworks are related to four different topics. In
Section 2.2.1, general assumptions are explained followed by standardized interfaces and
protocols for HIL. In the next sections, more design goals based on proprietary solutions for
OEMs follow in Section 2.2.3 and general design goals for simulation frameworks follow in
Section 2.2.4. At last, design goals related to timing in HIL and SIL frameworks are
presented (see Section 2.2.5).

2.2.1 General assumptions

First, we should also take into consideration properties of HIL distributed simulation
frameworks. The reason is that some requirements are common.

Most of the individual mechanical, pneumatic and electric devices which belong to the basic
technology of railway cars, relevant sensors, converters, actuators and also processor based
and configurable devices with simply definable functionality can be considered as Systems
Under Test (SUTs) for which the usage of HIL frameworks may be meaningful. However,
requirements arising relative such devices should be some subsets of requirements for HIL
frameworks in their relationship with integrated TCMSs. This includes their programmable
units with complex functionality.

The mentioned devices with relatively simple functionality are usually tested by means of test
benches with relatively simple and long-time changeless behavior. Simulation of complex
environment of these SUTs is mostly not necessary. A few and fixed sequences of stimuli
are usually sufficient for verifying the correct behavior of the considered SUTs.

In contrast to the above mentioned “simple devices”, the core programmable units of TCMSs
are tested by using simulation models of the whole environment. Test cases can be related
to the units’ functionality depending on their firmware, application software, communication
means, configuration data and complete parameterization. In this context, the models of the
whole environment include the sub-models of the “simple devices” and attained degree of
fidelity must be evaluated carefully in individual cases. Sometimes this degree is tuned or
even optimized with respect to compromises between model fidelity and demanded
computing power. The Simulation fidelity metric is a related, important topic to be considered
regarding the reproducibility of tests.

The following technical challenges regarding non-determinism of the SUT and HILSF shall
be considered influencing the validity of the simulation:

a) Execution of tasks of simulation programs on the side of HIL simulation framework is not
explicitly synchronized with tasks of programmable units of SUTs. It means that SUT do
not need to provide any synchronization signals for the simulation framework.

b) If a SUT includes two or more processor units with asynchronous execution of their tasks,
then its reactions to exogenous stimuli are generally not deterministic. Any test
environment cannot ensure strict repeatability of tests for such SUTs in terms of the
same way of internal path of execution in the SUT. It is necessary to prescribe some
metrics as well as its limit values as fidelity criteria for individual tests. By this, it is
possible to implement relevant evaluation software and to achieve some kind of weak
repeatability of tests.

c) Regardless of non-deterministic behavior resulting from unsynchronized processes on
the side of SUTs, a further source of problems arises. This problem is related to the
repeatability of HIL simulation runs and tests in the application of analog I/O channels.
Even if all timing problems can be eliminated in some cases, real Digital/Analog (D/A)
and Analog/Digital (A/D) converters always bring non-deterministic behavior into
channels. There are special cases when D/A converters of the SUTs and bound A/D
converters of the simulation system cause essential repeatability problem. Then,

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 11 of 79

additional software level quantizers embedded after A/D converters may be useful.
Unfortunately, it is not possible for the opposite signal flow to request such modifications
of the SUTs’ application software due to the fulfillment of the repeatability requirement.

As the general approach to solve the repeatability problem in HIL the definition of a
simulation fidelity metrics and desirability of adequate supporting tools available in the
intended simulation framework are needed.

2.2.2 Standard interfaces and protocols for HIL

In this chapter, standard interfaces and protocols for HIL are presented. Those interfaces
and protocols are related to power supply and the communication with other components.

Power supply – directly powered devices
The HILSF shall provide the power supply for powering SUT devices according to the EN
50155 standard. It shall provide all the nominal voltage ranges specified in the standard, i.e.
24, 48, 72, 96 and 110 V DC.

Power supply – PoE devices
The HILSF shall provide means of powering a devices over Ethernet according to the IEEE
802.3af standard.

Ethernet connectivity – physical interface
The HILSF shall provide an Ethernet 100 BASE-TX interface with M12 connectors and D
coding as well as an Ethernet 1000 BASE-TX interface.

Note

1000 BASE-TX is not yet standardized for the Train Communication Network (TCN) in the
IEC 61375 standard family, but it is widely used in the industry and it is expected to be
standardized soon.

Generic Internet protocol suite communication capability
The HILSF shall provide communication capability according to the subset of the Internet
protocol suite including at-least the File Transfer Protocol (FTP), Hypertext Transfer Protocol
(HTTP), Secure Shell (SSH) application layer protocols, Transmission Control Protocol
(TCP), User Datagram Protocol (UDP), Internet Control Message Protocol (ICMP), Internet
Group Management Protocol (IGMP) transport layer protocols and the Internet Protocol (IP).

TCN protocol suite communication capability

The HILSF shall provide all communication protocols TRDP and Train Topology Discovery
Protocol (TTDP) specified in the IEC 61375-2-3 and the IEC 61375-2-5 standards.

Standard TCN data classes support
The HILSF shall provide the capability of simulating following data classes for the
communication over ECN and Ethernet Train Backbone (ETB) according to IEC 61375-1
standard. Those classes are supervisory, process, message, stream and best effort data.

FMI interface for HIL simulation adapter

The HILSF shall – by means of its HIL Simulation Adapter (see Figure 2.9) – provide an FMI
interface for co-simulation of HIL / SUT(s) models connected to a simulator by
communication channel(s) and/or by Input/Output (I/O) signals.

Optional extensions:

1. The model description file (modelDescription.xml according to the Functional Mock-
up Interface (FMI), version 2.0) or its fundamental parts may be generated by an
Integrated Development Environment (IDE) applied for development of the SUT, e.g.
TCMS. Such an IDE on the one hand saves and processes configuration parameters
regarding simulated devices. On the other hand, it handles individual messages or

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 12 of 79

datasets and their variables relative of data exchange between SUT and the
simulated devices (mediating for the SUT’s behavior of plants).

2. Some configuration parameters regarding the communication between HIL / SUT and
the simulator are necessary for a functioning HIL Simulation Adapter. They could be
defined by “Annotations” of “ScalarVariable” elements. Those in turn are elements of
“ModelVariables” in several “fmiModelDescription” files. The configuration parameters
can be further defined by HIL Simulation Adapter tool specific “VendorAnnotations”
elements. In addition, some adoptions and designations have to be performed. Those
are related to the definition of the Extensible Markup Language (XML) data structure
of the specific “VendorAnnotation” and the reference rules from “Annotations” of
individual variables to shared elements of the given “VendorAnnotation”.

Figure 2.9 - FMI interface for HIL simulation adapter

2.2.3 More interface design goals for HIL in based on common proprietary
solutions of OEMs

Design goals defined in this chapter are based on experiences with testing of the typical
TCMS hardware.

Analog signal coupling conformable to industry standards
The HILSF shall provide modular means for configurable bidirectional coupling with SUT at
least by following standardized electrical signals: current 0-20mA, +-50mA, Direct Current
(DC) voltage +-10V and rheostat inputs in range 0 to 50kOhm. The resolution of the HILSF
output shall be better than 10bits and the accuracy shall be better than 1%. Furthermore, the
resolution of the HILSF inputs shall be better than 15bits while the accuracy shall be better
than 0.5%. The data rate for both HILSF inputs and HISLF outputs shall be faster than 1ms.

Binary signal coupling conformable to industry standards
The HILSF shall provide modular means for configurable coupling with SUT at least as dry
contact inputs, low power relay outputs, pulse counter inputs, DC voltage inputs and outputs.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 13 of 79

The HILSF digital inputs and outputs as well as the dry contacts shall be able to work for
nominal power supply voltages of 24 V, 28V, 36V, 48 V, 72 V, 96 V and 110 V DC.

On the one hand, the HILSF digital inputs shall be able to read the state of both SUT low and
SUT high side outputs. In addition, the minimal current consumption of the HILSF digital
inputs shall be equivalent to 200mW at the nominal power supply voltage. On the other hand,
the HILSF digital outputs shall be able to drive both SUT inputs connected to the ground and
SUT inputs connected to a battery voltage. The HILSF digital outputs shall be tolerant to
short circuit and the nominal current shall be higher than 0.2A.

The propagation delay of HILSF digital inputs and output shall be lower than 1ms.

Driving the SUT pulse counter inputs or the SUT inputs for revolving sensors is realized by
the HILSF outputs. Those shall be able to generate signals up to 30 kHz with rectangular or
sinusoidal waveform and up to 4 output waveform with a phase shift of 90 deg. The
amplitude shall be +-10V for the sinusoidal waveform and 0 to 12 or 0 to 24V for a
rectangular waveform. To enable the simulation to revolve sensor malfunction, the HILSF
shall be able to drive each output separately.

One advantage is the galvanic separation of digital inputs and outputs. It allows better
coverage of real needs.

Individual parameterization of input channels
The HILSF shall allow the setup of filtration parameters determining cutoff frequencies of
individual input channels. This includes the possibility to choose these parameters in
accordance with sampling periods and related task periods.

Notes

This requirement coheres with the needful lowering of the phase delay enabled by shortening
of sampling periods. This is desired in order to suppress delay scattering caused by
asynchronous sampling and data processing. HILSF must sometimes simulate continuous
systems and provide their pseudo-continuous outputs to be sampled by SUT devices
asynchronously against HILSF tasks. The sampling periods may be roughly 10ms (for
preprocessing) in the context of TCMS. However, the periods of generating relevant HILSF
outputs has to be substantially shorter.

Configuration and parametrization
The HILSF shall be able to store multiple sets of the configuration parameters for each test
case. It shall be possible to inject the parameters to the HIL by means of standard (e.g.
Simple Network Management Protocol (SMNP), ONVIF (Open Network Video Interface
Forum)) or proprietary configuration protocols. If the automated configuration of the HIL is not
possible, it shall be able to display configuration instructions to the tester.

Test and measurement API
The HILSF shall provide an Application Programming Interface (API) for external
measurements and evaluation tools as it provides a neutral API to the simulation
components. During the simulation, it must allow co-execution with external tools.

2.2.4 General design goals for simulation framework

Design goals in this chapter specify general features for the test environment and the
simulation framework used in TCMS testing. They are not necessarily limited to the HIL itself.

Sub-models and tasks
The HILSF shall allow defining simulation models composed of sub-models which should be
assigned to several tasks with individual activation rules. This enables deterministic
scheduling or concatenation.

Sub-models and programming languages

The HILSF shall provide all necessary tools for the development of simulation models by
means of a graphic language.

Notes

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 14 of 79

This requirement is based on experience with simulations practiced by UNI Company, where
PLC (Programmable Logic Controller) graphic languages Function Block Diagram (FBD) and
Sequential Function Chart (SFC, according to IEC 61131-3) were applied.

Support of simulation model verification
The HILSF shall provide means supporting a user-definable verification process of individual
sub-models. For those means, sets of measured test data can be obtained as time series of
samples of all inputs and outputs of the sub-models to be verified.
Individual sub-model has to be verified autonomously for several test data corresponding
with various modes and tests. Real-time as well as accelerated simulation shall be optional.
Furthermore, simultaneous evaluation of several criterion functions shall be possible for tens
of signals.

Predefined criterion function
The HILSF shall provide tools for evaluating wide-spread criterion functions of time series of
deviations regardless their origination.

Statistical tools
The HILSF shall provide tools for the evaluation of stochastic processes.

Notes
Support of graphical outputs (histograms, correlation functions, power spectral densities) is
grateful.

Pseudo-random generators
The HILSF shall provide sets of statistically independent and synchronizable pseudo-random
white noise generators, optionally with Gaussian or uniform distribution. These generators
shall be individually applicable as function blocks of simulation sub-models.

Noise coloring filters
The HILSF shall provide predefined objects of noise coloring filters applicable in connection
with pseudo-random white noise generators. These filters should be parameterizable either
in the time or the frequency domain.

Communication and feedback latency evaluation
The HILSF shall provide means facilitating statistic timing evaluation of received
datasets/messages coming from the SUT. This allows pairing of stimuli and feedbacks and
facilitates statistic evaluation of reaction times.

Alignment of feedback latency
The HILSF shall provide means for alignment of the simulation models’ feedback latency by
variable artificial delays of transmissions.

Notes
Some periodic task on the side of SUT may generate stimuli and send them to a subsidiary
unit controlling some part of vehicle technology or – during testing – to a simulation model
implemented by HILSF. The considered task can further read available datasets/messages
within a short time interval after sending stimuli and start processing of the obtained data
again. In these cases, minimal feedback latency of the simulation model may lead to random
skipping between two values of the overall transport delay. Higher computing power of the
HILSF in comparison with an original unit may cause greater uncertainty of the behavior in
some cases. This uncertainty may lead to worse fidelity of the simulation model and worse
conditions for repeatability of tests.

Transport delay modelling
The HILSF shall provide means for modelling the overall transport delay in control loops
including time-varying and also pseudo-randomly scattered values of delay.

Notes
The overall transport delay in a control loop includes a part due to physical properties of a
plant modelled by HILSF. Another part is caused by the asynchronous execution of all

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 15 of 79

involved tasks including the transmission of datasets/messages through communication
channels of the SUT.

Software portability
Software means of HILSF shall be usable in different environments.

Topology definition
The HILSF shall provide a Graphical User Interface (GUI) to define the topology of the HILSF
devices. In addition, it can be used to describe the topology of the given SUT including the
descriptions of all communication channels shared by the SUT and the HILSF.

Basic data types support
The HILSF shall support all basic data types defined in IEC 61375-1.

Import of custom data type declarations
The HILSF shall be capable to import text files containing declarations of data types applied
on the side of the given SUT. Partial and successive import shall be enabled.

Notes
XML should be the preferred format. In addition, the declarations of the data types applicable
in an SUT should be exported partially and successively by one or more IDEs which are
exploited for programming several units of the given SUT.

Import of dataset and message descriptions
The HILSF shall be capable to import text files containing descriptions of datasets and
messages to be exchanged between the SUT and the HILSF. Partial and successive import
shall be enabled.

Notes
XML should be the preferred format. All necessary addressing attributes and structure
descriptors of datasets and messages based on already declared data types shall be
imported before starting the code generation for the HILSF.

Import of dataset and message descriptions
The HILSF shall be capable to import text files containing descriptions of I/O modules of the
SUT, their used channels and all relevant configuration attributes and parameters.

Notes
XML should be the preferred format. A set of the SUT’s I/O modules should be delimited
according to a given interface between the SUT and the HILSF. Further I/O modules can be
applied inside of the SUT. In addition, a set of parameters of I/O modules and channels
should include parameters describing their dynamic properties as well as parameters
regarding maximum allowed load.

Visualization of configuration data
The HILSF shall provide the possibility to represent all configuration data regarding
interfaces to the given SUT or several subsets of them determined by several filtration
conditions.

Generation and export of aggregate configuration report
The HILSF shall be capable to generate aggregate configuration report as text file
comprising all merged configuration data obtained by successive importing of configuration
data.

Endianness conversion
The HILSF shall be capable to convert endianness of incoming and outgoing data according
to various formats. Those can be the own endianness and alternative formats standardized
by various communication protocols. Another possibility would be native formats for directly
or transparently connected processor units of the SUT. All these necessary conversions shall
be performed automatically based on the topology description. It involves channel

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 16 of 79

descriptors, declarations of structured data types and declarations of individual
datasets/messages to be exchanged between given SUT and HILSF.
HILSF shall support network byte order (big-endian) for the data exchanged by TCN and
other IP network protocols.

2.2.5 Timing design goals

Real-time support for HIL

The simulation and validation framework must support real-time data-transfer to support HIL
simulation. Even if the underlying communication network of the framework is non-
deterministic such as the Ethernet or the Internet, message delivery and the execution of
tasks in time shall be enabled.

2.3 SIL frameworks

Software in the loop (SIL) is a technique where a simulated plant and a simulated controller
are interconnected and run in real-time [60]. The technique is widely used and there are
different approaches dealing with it. In this section, some examples are presented that are
related to the railway (see section 2.2.1) and the automotive (see section 2.2.2) domains as
well as distributed SIL environments (see section 2.2.3).

2.3.1 Railway

In the railway industry, algorithm and software development is executed in company-wide
standardized tool chains. The major factor influencing the tooling – and thus the simulation
capabilities – is the certifiable series code production, not the state-of-the-art simulation.

Thus the tasks of the SIL are part of the software IDE, using the test framework that
integrated it. Examples are module and integration tests. This approach is feasible only as
the test sequences include the whole plant behavior in an abstract manner. As a drawback,
this abstraction prohibits the behavior exploration of behavior across the development focus
of one development team.

In the railway industry, the focus lies on automation and reuse of the test cases across
software releases and system generations. This is visible in the market by spread use of test
tools, e.g. [35] and [46] which have been certified for railway related process standards (e.g.,
EN50128 [21]).

For functions where the difficulty is related to the physical plant to be controlled, model-in-
the-loop setups are used, e.g. [12] and [81]. Such steps will be the first opening the
development chains towards model based IDEs. Those are often used in the automotive
domain – and therefore allowing the usage of automotive SIL environments.

All in all, the number of SIL frameworks in the railway domain is quite limited and more
frameworks considering HIL can be found. This is one research gap this work package
focuses on in future work of the distributed co-simulation framework. To reach this,
experience from other domains can be exploited. Hence, the focus of the next section lies on
the automotive domain where SIL is widely used.

2.3.2 Automotive

In the automotive domain, simulation has a long history and is wide spread in use for the
development of software based controllers. Until recently, engineering teams have been free
to use the simulation platform of their choice. This situation led to a vast variety of competing
general and specialized COTS tools as well as in-house solutions.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 17 of 79

Already successful simulation platforms are those for niches driven by outstanding singular
requirements. Examples are EB Assist ADTF [2] and TISC by TLK-Thermo GmbH. The
former example is for simulation and testing of driver assistance functions. In those use
cases, massive data streams from radar and visual sensors are the basis for testing
assistance functions which became the core feature for ADTF. However, the latter example
simulates thermodynamic systems like automotive cooling.

Since approximately 10 years, general (co-)simulation frameworks are used in automotive
engineering, however with limited spread until now. Examples are EXITE ACE by EXTESSY
AG (now part of PTC Inc.), Silver by QTronic GmbH, Icos by Virtual Vehicle
Forschungsgesellschaft mbH or xMOD by D2T GmbH. Two major drawbacks hindered the
wider success. On the one hand, the tools did not follow a standard thus risking the vast
investment in models of the tool user. On the other hand, the established processes did not
enforce the close cooperation during development across department or company borders.

The situation has changed. First, with FMI [9] a first universal standard for co-simulation and
model-integration for signal-based simulation has been introduced in 2010 (see Section
4.3.1). Extensive tool support by more than 90 tools and many industrial projects led to
continuous development of the standard.

More importantly the business processes in automotive development are changing gradually.
Cost reduction requires more virtualization and the reduction of prototype vehicles. This also
applies inside the cars. Functions are decoupled from the hardware architecture as they
grow with each car generation and the number of controllers has found a technical maximum
already. Thus functions are repartitioned among the controllers requiring very flexible SIL
testing without hindrances of company borders.

At present, the success of virtual cooperation by simulation during development is not a
technological challenge on the controller side anymore. The following advances are required
by the user of the test framework. The first aspect are methods for developing and
integrating plant models which perform sufficiently in the context of the different test cases.
Methods for managing the vast landscape of models are the second aspects. This includes
the versions and the variants of functional requirements and models

2.3.3 Distributed SIL environments

Nowadays, it is common to have distributed control systems with several plants and
controllers which are interconnected by real-time communication systems. To simulate those
systems, a simulated plant and a simulated controller can be interconnected by a
communication network and run in real-time. This technique is called Distributed Software-In-
The-Loop simulation (DSIL). In the following, two different environments for DSIL are
discussed. While the first approach realizes a distributed real-time simulation environment
called CEMTool, the second one is related to discrete event simulations. It is called SPADES
(System for Parallel Agent Discrete Event Simulation).

Real-time distributed SIL simulations are not simple to realize. They require a scheduling
algorithm to reduce network delays and guarantee real-time behavior. Additionally, a
Computer-Aided Control System Design (CACSD) tool is useful for quick controller design
and the simple connection of various hosts. It is effective for reducing development costs and
the amount of trial and error in the development [60].

The authors of [60] developed such a CACSD tool for real-time DSIL which is called
CEMTool. Their requirements are (i) easy network handling, (ii) the tool should design
various control algorithms easily, (iii) quick controller design and (iv) a compatible
programming grammar for all kinds of network scheduling algorithms. Furthermore, the
network must consider some control-oriented requirements. In each sampling interval, data
transmission and the computation of the control algorithms must be completed (i).
Additionally, a network scheduler must reduce network-induced delays (ii) and the network

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 18 of 79

must be reliable (iii). Finally, data for a given time must be processed together and should
not be missed with data for different times (iv).

In CEMTool, the nodes are connected via an Ethernet network. Since Ethernet uses a
random media access protocol without determinism, the environment requires a scheduling
algorithm to provide real-time guarantees. This algorithm works according to the
master/slave concept. The node with the smallest network load and computation time is
chosen as the master. A real-time clock in the master creates interrupts at the beginning of
the periods but there is no synchronized global time. Hence, the sampling intervals of all
nodes must be the same. As soon as an interrupt occurs in the master, it informs the slaves.
Afterwards, the master computes its control algorithm and sends its data to its partners in the
next time slot. The partners are waiting for the data and they perform their operation when
the data arrives. At fixed time-slots, the slave’s output data is sent to their partners.

SPADES [84] is a discrete event simulator for various applications in artificial intelligence
research. Its fundamental simulation components are agents whose thinking times are
tracked and reflected in the results. For this, the simulator uses software-in-the-loop
supporting distributed execution across multiple systems. Furthermore, the results are
reproducible with no influence of network or system load. In SPADES, the environmental
parameters can be tuned to execute the large number of trials required for machine learning.
Moreover, it provides interoperability as long as the agent architecture as well as the
language has the capability of writing to and reading from Unix pipes.

A typical execution cycle in SPADES consists of sensing, calculation and actuation which
can be executed as a pipeline. The thinking time is assumed to be non-negligible such that it
has to be included in the simulation. Moreover, the time varies based on the inputs.
However, the thinking time is the same as in the real execution since the deployed software
is included in the simulation. Measurements of the Central Processing Unit (CPU) time
required to process an action are performed based on a modified kernel counting CPU
cycles.

Much work in distributed simulations is related to break down the simulations into executable
components so that communication requirements are low. Instead of using a flexible and
adaptable organization, the breakdown is fixed in SPADES. It allows as many agents as
possible to compute without violating causality. For this, SPADES uses a conservative
discrete event simulation algorithm. The algorithm only processes events if the causal order
is met. However, events can be processed out of temporal order if they are not causal
related. Interactions of agents in the environment are not necessarily synchronized due to
the discrete event nature. Any set of agents can perform actions at a given time-step. Hence,
smaller time-steps for the simulation do not increase the simulation network’s load and all
actions are realized at the correct time.

The architecture of the SPADES environments consists of a world model connected to a
simulation engine and multiple agents. In this environment, the world model represents the
environment to simulate and the simulation engine is implemented in C++. As the center of
the discrete event simulator, the simulation engine queues all events. It acts as a master and
coordinates the communication. Queuing the events is realized by a centralized list. Each
process that needs to schedule an event must notify the master. This notification is implicitly
realized by the agent’s actions. Hence, the master has complete knowledge about pending
events at all times and can determine which events can be processed safely. Furthermore, a
communication server is connected to each agent. It communicates with the simulation
engine using the TCP/IP protocol stack. However, the agents and communication servers
exchange data by Unix pipes. In that way, the agents can be implemented in different
languages as long as they support those pipes. Major drawbacks of this implementation are
the lacks of efficiency and scalability. Since the master coordinates the communication and
manages events, it can become a performance bottleneck slowing down the simulation.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 19 of 79

2.4 HIL frameworks

Software-based simulation cannot exactly replicate real operating conditions [68]. One
solution to overcome this problem is the replacement of simulated models with real hardware
devices. The subsequent sections present different approaches in the railway (see section
2.3.1), the automotive (see section 2.3.2) and other domains (see section 2.3.3).
Furthermore, there are available environments for distributed HIL simulation depicted in
section 2.3.4.

2.4.1 Railway

A HIL can be realized following two approaches, c.f. the figure below.

Figure 2.10 Two approaches for realization of the HIL

In the automotive domain, COTS test automation and HIL hardware are typically used. This
requires a TCMS specific interface to be developed for the connection to the SUT. As all
railway vendors use their individual TCMS controllers without standardized interfaces this
approach is most often not followed.

For the sake of an efficient and easily usable HIL simulation, railway vendors tend to use the
same TCMS controller as HIL environment as the SUT. All interfaces are inherently
available. This leaves the task of implementing rail vendor specific test automation in the
controller service as HIL.

This implementation can be done using the same tool chain as the SUT. Thus tool chain
certifications are inherited and the engineering know-how is already available, the effort for
establishing HIL testing is reduced.

Besides this, there are various HIL frameworks available for the railway domain. Facchinetti
and Bruni study the interaction between a physical pantograph and a numerical model of a
centenary. Their test bench reproduces the interaction in a 0-20 Hz frequency range
including the effect of stagger in the contact wire [105]. A HIL simulator which connects a
vehicle control system to a real-time dynamic vehicle simulator can be found in [106]. The
authors focus on the simulation problem’s hybrid nature and causality variations between
discrete and continuous parts. The authors of [107] implemented a system to simulate the
traction system of an automatic subway. It is based on two induction machines representing
the influence between a mechanical power train and traction drives. In another work, they
exploit HIL testing to validate an anti-slip control mechanism for traction systems. Finally,
Baccari et al. use HIL to test the control software of electromechanical train components
[109]. They use mathematical models to represent relevant electromechanical components
of a power train and test them against the control software of related ECUs.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 20 of 79

2.4.2 Automotive

The automotive industry is dominated by a number of HIL vendors: dSPACE, ETAS, National
Instruments, OPAL-RT or Vector Informatik. All of them have their specific strength but are
characterized by being largely not interoperable with each other.

One example for such a tool is presented by Kulkarni et al. [58]. The after-treatment system
in engines controls the environmental pollution due to NOx particles in exhaust gases. To
improve testing time and to improve the results, Kulkarni et al. introduce a HIL system. This
system is built on an engine emulator called Load-box User Interface System (LUIS Bench)
and FMET box. It uses NI TESTSTAND and NI LabVIEW to automate the Failure Modes
Effects Tests (FMET). The developed system simulates the required fault conditions.
According to the testing requirements of FMET, it removes the fault conditions and reaches
the same results as the conventional bench FMET. However, the simulation requires
significantly less time.

Under the guidance of the ASAM association, several standards have been developed
bridging these gaps of interoperability. The ASAM Standards cover all interfaces necessary
in an extensive HIL setup – with one exception.

Figure 2.11 Overview of ASAM Interface Standards [50]

In 2013 the ASAM XIL API was published for the connection of different components of a
distributed co-simulation (ASAM - Association for Standardisation of Automation and
Measuring Systems [33]). It became apparent that the ASAM XIL API is closely related to the
FMI Standard which is explained in detail in Section 4.3.1.

The similarity of test execution on HIL using models and co-simulation of SIL has led to an
effort joining the two streams into one. This lead to the ITEA3-funded consortium ACOSAR
(ACOSAR Consortium [24]). Their work shows an extensive overview of material and
requirements of the whole domain which shall not be repeated here.

2.4.3 Other domains

HIL frameworks are not only used in railway and automotive, but also used in other domains.
Examples are power quality studies in NAVY all-electric ships (see [66], e.g.), electrical grids

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 21 of 79

(see [79], e.g.) and space research (see [97], e.g.). The referenced approaches are
described in the following.

The platform provided by Liu et al. [66] is utilized to test the sensitivity for power quality
deviations of a variable speed drive controller card. To achieve better accuracy of the testing
results, the authors implemented a method based on a real-time HIL simulator. It is
composed of a digital simulator (RTDS), the tested hardware as well as their interfaces.
Successful experiments of a U.S. Coast Guard icebreaker have contributed to the conceptual
design of a universal power quality test bed.

Experimentally evaluating control strategies for power interfaces require a significant
allocation of time and other resources [45]. Power HIL (PHIL) simulation can support the
process, hence the authors of [45] demonstrate a micro-grid test bed for Distributed Energy
Resources (DER). They combine PHIL techniques with real-time systems by providing a
hierarchical, model-based approach. This approach significantly improves flexibility by
configuration. Due to its hierarchical character with RT targets and RT-embedded industrial
controllers, it applies real-time control. Hence, it allows to analyze the performance of grids,
micro-grids and DERs. Experiments with two use-cases show the approach’s versatility and
usefulness for reproducing realistic tests.

Paolone et al. [79] present a HIL proof-of-concept of a real-time state estimator (SE) for
Active Distribution Networks (ADN). Their goal is to reach high-rates of power network state
assessment. Hence, the time-scales for the execution of the estimation should be in the
order of microseconds. To reach this, data is acquired from Phase Measurement Units
(PMUs), aggregated in Phasor Data Concentrators (PDCs) and stored in a real-time
database which is coupled with the estimation. Since the real state is not known exactly,
Real-Time Simulators (RTSs) are used to calculate an approximated state. This
approximation is compared to the estimated state to determine the accuracy of the state
estimation process. Experiments in the ADNs have shown acceptable accuracy levels
according to the operation conditions.

The Alpha Magnetic Spectrometer (AMS) was mounted on the International Space Station
(ISS) to search for dark matter. Since there are difficulties in ground testing due to hardware
and environmental limitations, Sun et al. introduce a time-saving approach [97] in HIL
simulation that connects real controllers with virtual devices and reuses flight data instead of
mathematical models. The AMS consists of various detectors whose data is processed by
controllers in the system. From the ground, manual control is possible if there is a good
communication connection. However, communication outages pose potential risks. In the HIL
simulation, a master node controls its slaves by sending requests to them. As there are many
nodes, they all cannot be simulated exactly using mathematical models. Hence, the slaves
send real data from the AMS in space. Real components are connected to the simulated
ones using an interface device. This interface realizes the communication using appropriate
protocols for the use-case. Experimental results show the effectiveness and the efficiency pf
the approach.

2.4.4 Distributed HIL frameworks

HIL simulation combines the accuracy of physical prototyping with the cost effectiveness of
model-based simulation. Furthermore, integrating multiple HIL setups allows the full
exploitation of the HIL benefits. Those are reasons why recent research has focused on
reaching this integration over the Internet as Distributed HIL Simulation (DHILS). [28]

One desired and important concept in DHILS is transparency. It measures the accordance of
the distributed system’s dynamics to that of directly coupled tools. If the value is high, the
dynamics do not change significantly. [28] presents different metrics which measure
transparency and a statistical approach based on time-domain analysis. This approach even
handles nonlinear stochastic systems as present in Internet-distributed HILS. Two sources of
transparency degradation in the Internet are Quality of Service (QoS) and distributed real-

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 22 of 79

time simulation. Aspects of QoS in the Internet are delay, jitter and packet loss. While delays
are related to routing and processing in the network, jitter is the variability of the delay.
Packet loss occurs due to the Internet’s best effort character. However, those sources are
well known and still subjects to research. Distributed real-time simulation mainly requires co-
simulation in real-time with data exchange at defined coupling points (see Chapter 4). The
communication over the Internet introduces sampling effects which will degrade
transparency. Without having access to the state information of all nodes, the theoretically
established accuracy is not achievable and hence transparency will be reduced.

The second goal in [28] is to identify the major cause of transparency degradation through
research on accuracy reduction. Using this knowledge, mechanisms to increase
transparency can be developed and fundamental limitations can be indicated. As a third goal,
the authors examine if transparency depends on output signals in the system or if it is an
independent property. Experimental results show that distribution has an adverse and
significant effect to transparency which can even dominate QoS aspects. Thereby, there is
no difference between Local Area Networks (LANs) or the Internet as long as the latter incurs
small delays. However, there are different use-cases where the effect of distribution is
insignificant. This shows that transparency is not an independent property but depends on
the signal of interest.

Lu et al. [68] present a high performance real-time simulation environment to obtain high-
fidelity results in HILS. They extended the Virtual Test Bed environment (VTB, see Chapter
4) by a real-time component (VTB-RT) to couple a simulation environment with the hardware
under test. VTB-RT is a low-cost hard real-time simulation environment built on open-source
software and off-the-shelf hardware. It maintains acceptable results and even supports
distributed simulations. Since VTB-RT shares major parts with the underlying VTB
environment, both tools are compatible to each other. The environment utilizes the open-
source real-time application interface which is a Linux kernel modification. This interface
modifies the handling of hardware interrupts and enables the Linux hard real-time
capabilities. As a HIL simulation requires I/O interfaces to hardware, the Comedi freeware is
used. It provides device drivers for many data acquisition tools and works with the Linux
kernel as well as the Real-Time Application Interface (RTAI). To solve the models, the SRC
solver is utilized which manipulates the real hardware interfaces. As a result, it enables the
coupling of the hardware plant with the simulation environment.

CORESIM [62] is an approach for realizing interoperability between non real-time and real-
time simulations in a plug-and-play approach. Such systems require a synchronization
mechanism of the logical time and the real time. There are two different mechanisms, a lock-
step and a time-slicing approach. The first one is easy to implement but slows down the
simulation because every simulation tool processes one simulation step and waits for the
other tools. Since the real subsystems are frozen for short times in this approach, it is not
useful in use-cases like velocity control. Opportunistic strategies exploiting time-slicing use
longer intervals in which the real subsystems are frozen. In those intervals, the simulation
tools catch up at their own speed having a copy of the logical time. If the tools require new
data which is not available yet, proxies are used to approximate the data. As soon as the
correct data is available, it is compared to the approximated data and the simulation is rolled
back if necessary. This approach has some disadvantages. For example, it is possible that
the logical time continually rewinds to the beginning. Hence, the authors of [62] use fixed
intervals for the synchronization and fast proxies with rollback. Using this, the real hardware
can run for a reasonable duration of time. Furthermore, there should be only one rollback per
period. However, interactions between the subsystems are not properly modelled and the
ideal period length is a balance of simulation accuracy and the real subsystem’s run-length.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 23 of 79

2.5 Research gap for state-of-the-art

In the context of HIL and SIL frameworks, a research gap can be identified in the following
challenges. Those are related to the handling of disturbances, setting up the HIL and the
temporal behavior of HIL and SIL simulations.

The first challenges cover the handling of distributed simulation in case of disturbances and
efficient simulation set up. Disturbances can delay the communication in the framework.
Hence, it shall provide automatic functionality for assessing the simulation for delayed
communication and for a structured failure reaction while it still ensures a valid simulation
behavior. This task is similar to the development of a failure reaction and central reaction
handler of a car. Moreover, not every disturbance is of equal severity for the consistent
behavior of the simulation. The simulation framework shall provide a sensitivity analysis for
disturbances occurred during the simulation for assessing the simulation validity online or in
post-processing. Due to timing constants inside the simulation components, the timing
architecture of a composed simulation differs from the timing of the communication links
between the components. To realize the efficiency of the simulation setup, an automatic
system analysis is required. It calculates a simulation setup from the composed system
description and the simulation models properties.

Setting up HILSF frameworks should be realized in a hybrid way. To realize HIL testing, two
competitive approaches were presented in Figure 2.9, while the second approach is usually
preferred by a TCMS vendors/integrators. There are generic modular system which are
designed for the composition of TCMS systems. In some cases, those generic systems are
not equipped by instruments adequate for the implementation of some partial sub-models of
plants. Then, the exploitation of some COTS simulation tools can be helpful. Cooperation of
disparate simulation instruments must be solved in such cases. The application of a
standardized interface is desirable in this context and the advantage option could be the FMI
interface. In this context, adding HIL specific attributes into tool specific parts of the common
FMI modelDescription.xml is useful. Those attributes include datasets/messages and
variables.

Regarding the timing behavior, the presented HIL frameworks are all capable of providing
real-time simulations. Hence, the research gap in this context will be the inclusion of the
available real-time concepts for HIL over the Internet.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 24 of 79

Chapter 3 Simulation of wireless railway

networks

3.1 Design goals for T2G test environment

The simulation framework will be able to perform an early validation of TCMS including its
interface to the ground systems.

Nowadays, T2G communications provide information about position and speed of the train in
order to ensure the passengers’ safety. However, as the popularity of this public transport
increases, more efficient and reliable railway systems are demanded. Moreover, the recent
progress in mobile telecommunications technology has allowed railway control systems to go
a step forward.

3.1.1 Quality of Service (QoS) testing of TCMS T2G interface

This chapter details the QoS parameters for the Train Control and Monitoring System
(TCMS) interface to T2G system.

The QoS parameters for a T2G interface depend on the operational applications which rely
on this interface. These applications may be classified in [70]:

1. Control applications.

2. Monitoring applications.

3. Video applications.

To specify the parameters, the work from Roll2Rail has been considered [1]. Based on
CENELEC EN 15380-4 standard that determines the function groups of a railway vehicle, the
functions with the needs of the data exchange over Train Communication Network (TCN)
have been identified. In addition, their required communication characteristics have been
assessed. These agreed characteristics include among others the data classes, safety
relevancy and QoS parameters (data rate, latency and jitter). They have been further
mapped to train applications (Functions in the terminology of TCN).

It is to be noted that the TCN serves for the communication of different kinds of applications
found on board of a train. It turned out to be beneficial, not only for the requirements
elicitation process, but also in general, to group the applications into the following three
function domains:

• TCMS safety and non-safety function/functionalities - its functions are mandatory to
ensure safe train movement and to ensure carrying the payload (freight or
passengers),

• Operator Oriented Services (OOS), e.g. Closed Circuit Television (CCTV) – the
functions of the domain are aimed at improving the operational parameters of the
train (e.g. maintenance costs, general vehicle availability).

• Customer Oriented Services (COS), e.g. infotainment – the functions of the domain
are related to passenger comfort. Here, customers’ own devices may be interfaced to
the COS functions.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 25 of 79

The functions which a T2G communication system handles are shown in Table 3-1,
as well as their required communication characteristics (packet size, data rate, cycle
time, latency and jitter). Signaling system, voice and video transmissions as well as
Passenger Information Services (PIS) data is transmitted. Also, in the context of the
new Board to Ground communication system which is defined in Roll2Rail, the T2G
link is proposed to send monitoring data about the TCMS to ground to develop new
monitoring applications. Although the TCMS functions to monitor have not been
defined yet, the QoS parameters have been already fixed. In Table 3-1, they are
shown for every function. These parameters (data rate, latency and jitter) must be
guaranteed by the T2G communication system for a proper working of every
function.

Table 3-1 QoS parameters of the T2G functions.

CENELEC Function Function
domain

Packet
size

Data rate
[bit/s]

Cycle
time
[s]

Latency
[s]

Jitter
[s]

Provide train to ground
communication

TCMS 128

 0.2 1 0.1

Alarming mechanism to
the ground

TCMS 512 10 1 0.5

Provide administration
service for
communication to the
ground

OOS 97.65kbps 10

Send diagnostic data to
the ground

OOS 9.53Mbps 60

Send condition data to
the ground

OOS 97.65kbps 10

Send train position to
the ground

TCMS 256 0.5 1

Send train status to the
ground

TCMS 128 0.5 1

Send voice data to the
ground

OOS 62.5kbps 0.2 0.03

Send video data to the
ground

OOS 95Mbps 1 0.1

Provide alarming
service to the train

TCMS 512 9.76kbps 1

Provide administration
service for
communication to the

OOS 976.56kbps 10

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 26 of 79

train

Download software to
the train

OOS/COS 95.36Mbps 10

Send train configuration
data to the train

OOS 95.36Mbps 10

Send diagnostic data to
the train

OOS 95.36Mbps 60

Send PIS data to the
train

OOS 95.36Mbps 60

Send voice data to the
train

OOS 62.5kbps 0.2 0.03

Send video data to the
train

OOS 95Mbps 1 0.1

Antitheft alarm OOS 512 5

3.1.2 Test environment for the testing of the TCMS T2G interface focusing on
the ground peer and functionality testing

The T2G Test Environment (T2GTE) will enable testing and validating the T2G system which
is specified in the standard IEC 61375-2-6. It observes the complete chain which also
includes on-board systems and ground (wayside) systems.

The basic context diagram of the T2G system is shown in Figure 3.1 .

MCG

I_TCN

Access network GCG App
TCMS
OMTS

I_MCG_OTA I_GCG_APII_GCG_AN

Figure 3.1 - T2G system components and interfaces

Depending on the kind of tests performed, each of the components shown in Figure 3.1 can
be a component of the T2GTE, a SUT (System under Test) or a part of it.

TCMS, OMTS represent a whole on-board train system with all its functionalities. The TCN
communication network is included in this representation.

MCG is a Mobile Communication Gateway. There can be more MCGs in one train connected
to the TCN and up to hundreds of MCGs connected to one GGC.

Access network represents an Over The Air (OTA) wireless communication channel as well
as the ground communication infrastructure. It is a general IP-based network and realized as
a dedicated railway communication network or as an overlay private network (e.g., Virtual
Private Network (VPN)) over the public GSM/3G/4G/5G or WiFi (Wireless Fidelity) network.

The MCG can communicate with the GCG over multiple access networks and select the
network offering the best-fit QoS. Furthermore, it is able to switch the networks dynamically
as the train moves. It is also possible (but not mandatory) to communicate over several
networks simultaneously.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 27 of 79

The Access network will always be simulated in the T2GTE, since real wireless networks
cannot guarantee the reproducibility of tests.

GCG is a Ground Communication Gateway which provides standardized application services
and manages the security layer of the T2G communication.

App is any application which needs to exchange data with on-board systems. One GCG can
provide access to multiple Apps.

I_TCN is the standard communication interface between an MGC and other train systems
(TCMS, OMTS) provided by means of the TCN. It is specified from the physical layer
(Ethernet) up to the application layer (communication services).

I_MCG_OTA are one or multiple physical wireless interfaces. As only the upper
communication layers starting from the layer 3 are standardized in the IEC 61375-2-6 this
interface can be implemented as any IP based network. In the T2GTE, it shall be
implemented as a selected subset of physical networks (e.g. GSM 2G, 3G, LTE), because
real HIL devices will be connected.

I_GCG_AN is the communication interface of the GCG for communication with MCGs
through access network(s). Since it is specified only on OSI layer 3 and higher, it can be
implemented as a generic Ethernet interface.

I_GCG_API is the GCG interface to the external application. It is not standardized and will
not be the subject to be tested.

The T2G test environment shall enable the execution of the following groups of test
scenarios. The communication between the components will be based on the state-of-the-art
of wireless communication networks (see Chapter 3.2).

Tests of the MCG device

MCG test scenarios will cover tests of the MCG device itself. MCGs will be SUTs and will be
present as HIL in the T2GTE. Traffic generated by on-board TCMS devices as well as TCN
network functions will be simulated on the I_TCN interface. By means of the physical
I_MCG_OTA interface, MCGs will be connected through Access network(s) simulator to the
simulated GCG which enables testing of the standard OTA services. The T2GTE will also
generate network traffic from simulated ground applications.

SUT - HIL

MCG

I_TCN

Access network GCG App
TCMS
OMTS

I_MCG_OTA I_GCG_APII_GCG_AN

Figure 3.2 - Test setup for MCG tests

Tests of the GCG

GCG tests scenarios will cover software integration tests of the GCG. Since the GCG will be
an enterprise IT application based on standard server hardware or even provided in cloud
IaaS or PaaS services, we do not anticipate HIL testing here. The GCG will be tested as SIL
or as an external service connected by the I_GCG_AN interface to the simulated access
network. Traffic generated by fleet of vehicles equipped with MCGs will be simulated by the
T2GTE.

The interface I_GCG_API is not standardized and will probably be vendor-specific. The
T2GE shall at least provide a framework for realizing mock-up traffic on this interface.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 28 of 79

SUT - SwIL

MCG

I_TCN

Access network GCG App
TCMS
OMTS

I_MCG_OTA I_GCG_APII_GCG_AN

Figure 3.3 - Test setup for GCG tests

Tests of the complete T2G communication system

In this group of test scenarios, integration tests of the whole T2G communication system will
be performed. The test setup will combine the setups of the first two groups of scenarios –
i.e. both real MGCs and GCGs will be present as HIL or SIL. Both, MCGs and GCGs will be
connected in the T2GTE by simulated Access network(s).

Traffic generated by on-board TCMS devices as well as TCN network functions will be
simulated on the I_TCN interface. As mentioned above, the I_GCG_API is not standardized
and similar to the previous case, a framework for mock-up traffic shall be provided.

SUT – HIL + SwIL

MCG

I_TCN

Access network GCG App
TCMS
OMTS

I_MCG_OTA I_GCG_APII_GCG_AN

Figure 3.4 - Test setup for T2G system integration tests

Integration tests of the on-board – ground distributed applications

This group of test scenarios will cover an integration test for distributed functions or software
applications. This test includes vehicle subsystems and ground subsystems. One Example of
such an application is the distribution of route maps for Automatic Train Operation (ATO)
system or remote camera surveillance system.

On-board components of the application can be connected to the T2GE directly through the
I_TCN interface or it can be part (HIL or SIL) of a simulation of a complex TCMS system. The
vehicle subsystem can be present in multiple instances (up to several hundred).

The T2GTE will simulate a complete T2G communication system. MCGs and GCGs can be
HIL/SIL or can be replaced by simulation models in this setup. However, access network will
always be simulated.

SUT - SwIL

MCG

I_TCN

Access network GCG App
TCMS
OMTS

I_MCG_OTA I_GCG_APII_GCG_AN

SUT – HIL or SwIL

Figure 3.5 - Test setup for integration tests of distributed application

3.2 Simulation of T2G wireless communication networks

In the literature, there are a lot of research works in wireless communications dealing with
the simulation of wireless communication networks particularly in the context of mobile
communication networks. These simulation approaches can be utilized in a test environment
to evaluate the communication between the MCG and the GCG as described in the previous
section. We can mainly find four categories of works to simulate the networks:

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 29 of 79

- simulations devoted to radio channels modelling;

- simulations at physical layer of the communication system dealing mainly with the
evaluations of signal processing algorithms;

- simulations on upper layers of the Open System Interconnection (OSI) model (MAC
(Media Access Control) or LLC (Logical Link Control) layers for example) to evaluate
some specific process such as handover for example;

- simulations of the whole telecommunication network behavior with several base
stations or access points and several mobile terminals to evaluate the global behavior
of the system versus traffic load for example.

The topic of train to ground simulations (T2G) is more restricted in the literature but one can
find a lot of available references. With the same classification we can mention works related
to radio channels modelling in the context of urban rail [36] or in the context of a high speed
line [102][102]. The aim of these works is to provide radio channel models (path loss, delays,
shadowing, etc.). These models can be used to predict radio propagation in railways
environments or to evaluate the behavior of the physical layer of the system in various
environmental conditions.

On the second category, we can mention several papers related to the evaluation of
enhanced MIMO (Multiple Input Multiple Output) algorithms at the physical layer. The
application is focused on existing CBTC (Communication Based Train Control) system based
on WIFI liked modules in tunnels [59, 31]. [51] presents more specific simulations in the
context of high speed trains concerning the estimation phase of the signals. The aims of
these works were to propose new signal processing algorithms (modulation, coding, MIMO
precoding techniques, video coding, channel estimation, etc.) at the physical layer to
evaluate the performance of these techniques in various channel models representative of
the railway environments (tunnels or high speed). The evaluation will focus on the evaluation
of BER (Bit Error Rate) or FER (Frame Error Rate) in general for a given signal to noise ratio
and QoS when it concerns video. The performances are generally compared to KPI
expressed by industry in the case of CBTC or ETCS (European Train Control Systems)
systems. Another paper presents a testbed for evaluating LTE (Long Term Evolution) in
High-Speed Trains context [86].

We can also mention works on handoff performances in the context of CBTC [49], or the
QoS analysis of train-2-ground communication system based on TD-LTE [103].

Other works deal with the behavior of the whole wireless network using OPNET modeler in
the railway domain. OPNET is a communication network simulator based on the principle of
discrete event simulation. It enables global modelling of the communication systems through
a large library of network components, communication protocols, application models and
data streams. OPNET modeler integrates various existing telecommunications standards as
well as fairly accurate statistical analysis. For example, it allows a complete modelling of a
LTE communications system. It models the behavior of the access network (radio) and the
core network Evolved Packet Core (EPC). It is also possible to test the mechanisms of QoS,
management of the mobility, the adaptability of the radio profiles, etc. It allows taking into
account radio channel models.

Sniady & Al present some evaluation of LTE performance on the context of high speed line
for different scenarios [93, 94], while Aguado & Al. have considered WIMAX and LTE [3, 67].
Kassab & Al. have implemented a LTE Based Communication System for Urban Guided-
Transport and they present a QoS Performance Study [55] in different architecture scenarios
versus the number of trains. Furthermore, Sondi & Al. present how to consider test scenarios
based on real-world traces for the ERTMS Telecommunication Subsystem Evaluation [95].

In addition to OPNET, other discrete event simulators have been used to study the behavior
of a whole wireless network for T2G. OMNeT++ has been used to analyze a WiFi network for
CBTC in urban trains in [104]. Jointly, a microscopic railway simulator (BRaVE) is considered

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 30 of 79

to model the basic functionality of railway control and management. A hybrid WiMAX-WiFi
solution is simulated in [22]. The proposed communication system uses a WiMAX interface
for the T2G and a WiFi interface for the intra communications. The application services
provided is VGA video and throughput, packet losses and latency are evaluated in a
handover scenario inside a tunnel for two different velocities. Maureira & Al. have developed
a simulator for GSM and WiFi networks in OMNeT++ [71]. The simulator allows testing
several algorithms in different environments since several physical parameters such as
Doppler Effect or fading channels can be configured.

Furthermore, NS-2 is used by Casasempere & Al. to evaluate video transmission over
WiMAX [19]. Several mobile users generate the H.264 video traffic flow and send it to a base
station. The delay is evaluated in function of the number of nodes and the speed of them.
[77] uses NS-2 to simulate WiMAX and WiFi networks for public transport. The Internet
connection is simulated in two cases, off peak hours and peak hours, where the number of
passengers trying to get Internet access differs. Also, satellite systems have been simulated
using NS-2 [69], and the electrical trellises effects are evaluated for TCP applications.

Recently, Nguyen & Al. have presented a new analytical approach to evaluate the critical-
event probability due to wireless communication errors in the T2G link for Train Control
Systems [76]. They have considered Petri Nets model.

All these research works are summarized in Table 3-2.

Table 3-2 Research works of Train to Ground (T2G) simulations

Ref. Technology Scenario Simulator

[102] Radio channel
models

Urban train Measurements
campaigns and

simulations based on
ray tracing
techniques

[36] Radio channel
models

High speed train Measurements
campaigns and

simulations based on
ray tracing
techniques

[59] Physical layer Urban train Measurements
campaigns and

simulations on signal
processing

[31] Physical layer Urban trains Simulations on signal
processing

[51] Physical layer High speed train Simulations on signal
processing

[49] Handoff Urban train Simulations

[103] TD-LTE High speed train QoS analysis

[86] Testbed LTE High speed train -

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 31 of 79

[93] LTE High speed train OPNET

[94] LTE High speed train OPNET

[3] WiMAX High speed train OPNET

[67] LTE High speed train OPNET

[55] LTE Urban train OPNET

[95] ERTMS test
scenarios

High speed train OPNET

[104] WiFi Urban train OMNeT++

[22] WiMAX-WiFi - OMNeT++

[71] GSM and WiFi Urban train and high
speed train

OMNeT++

[19] WiMAX - NS-2

[77] WiMAX and WiFi Public train NS-2

[69] Satellite system - NS-2

[76] Train Control
Systems

Urban train Analytical (petri nets
model)

3.3 Research gap for state-of-the-art

The research gap for the simulation of wireless railway networks lies in the development of a
test environment for testing the Mobile Communication Gateway (MCG) and the Ground
Communication Gateway (GCG) in T2G communications. For this, the state of the art of
Simulation of T2G wireless communication networks and the description of the test
environment for the testing of the TCMS T2G interface described in chapter 3.1.2 must be
taken into account. The MCG and the GCG, which are the Devices Under Test (DUTs),
provide the interface between TCMS and ground systems through a wireless network, as
shown in Figure 3.6.

Figure 3.6 T2G and TCMS networks in a train.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 32 of 79

The test environment will be based on the use of the OPNET discrete event simulator from
Riverbed. It simulates the TCMS and the wireless network.

Depending on the test scenario (see chapter 3.1.2), the MCG may be a real product
connected to the simulator using HIL or SIL. The MCG will be a HIL device in those
scenarios in which it is considered as DUT and a SIL device in those scenarios where the
DUT is the GCG. The GCG will always be tested as SIL. The possible simulation
environment is shown in Figure 3.7. The MCG is developed in the Roll2Rail context, while
the GCG as well as the test ground application will be provided by the CONNECTA project.

Some End Devices (ED) and their application, which sends and receives data from the
ground peer through the MCG, will be simulated. In the wireless network simulation, a
channel emulator will model the physical layer for one link on different technologies (LTE,
GSM, UMTS, WiFi) and the real wireless channel. A channel emulator can be used to
emulate physical channel characteristics. If we will not use the emulator, different
propagation features could be configured (delay spread, channel attenuation, etc.) with
OPNET on a very simple basis. Regarding the different network characteristics and the
possible scenarios, they will be simulated by the discrete event simulator, whenever this is
possible. A thorough analysis of each scenario, matching the simulator capabilities, needs to
be previously completed.

Figure 3.7. Simulation environment for MCG tests.

In OPNET we can consider a very simple GSM model, some Wifi models and a quite
accurate LTE model. The LTE model is following the standardization and is considered as
the best one for discrete event simulators. Each fixed network is associated with appropriate
mobiles that are able to operate only with a single network. In the project duration, it will be
difficult to implement several standards; thus, a choice should be done to keep realistic,
attainable targets.

Only in simulations, we can model a MCG as a mobile equipped with several physical
interfaces which is desired for the real system. A specific applications layer (middleware)
could be developed to manage the heterogeneous handovers between the different
networks. However, it will not be possible to simulate this behavior without the knowledge of
how the MGC manages the handovers.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 33 of 79

Chapter 4 Distributed simulation frameworks

and co-simulation

4.1 Design goals for the distributed co-simulation framework

In this section, design goals for the distributed simulation framework are defined. Those are
separated into design goals for co-simulation (see Section 4.1.1) which are further extended
by design goals for distributed co-simulation (see Section 4.1.2). Additionally, there are
design goals for applicability (see Section 4.1.3), timing (see Section 4.1.4), configuration
and reconfiguration (see Section 4.1.5) and security (see Section 4.1.6).

4.1.1 Design goals for co-simulation

Network-centric simulation at system level

The simulation tool focuses on the communication in the train-network. Furthermore, the
degree of abstraction lies on the system level using models that are implemented in a high-
level language.

Discrete event simulation

Since the focus of the simulation framework lies on the communication network, the progress
of the simulation will be performed in a discrete manner.

Determinism and reproducibility

Determinism and reproducibility are desired since a repetition of the simulation with the same
inputs and the same configuration will produce the same results. In this way, simulation
executions with different parameters are comparable and testing is simplified.

Interoperability between heterogeneous (communication) systems and protocols

By providing interoperability, the co-simulation framework is unrestricted to the simulation of
defined communication systems and protocols. Those become exchangeable and the
framework can be used for all components in the railway domain.

Coupling of different domains

End-devices such as plants usually perform their execution in the continuous-time domain.
However, the communication between components in the system as well as the execution of
the control algorithms have discrete dynamics. Hence, the framework must provide
interfaces and mechanisms to couple both domains.

Portability between different host platforms

The co-simulation may be executed on heterogeneous systems with, e.g., different operating
systems, network connections, etc. Hence, the framework should be portable between
different host platforms.

HIL and SIL co-simulation for virtual placement in the market

One goal of the Safe4RAIL-project is virtual placement in the market of complex railway
systems. To reach this goal, SIL and HIL are required and provide an early validation of the
components.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 34 of 79

Detection and handling of events by simulators

The simulation tools shall detect events occurring in the simulation to inform the coordination
algorithm. Furthermore, an appropriate event handling mechanism has to be implemented.

Synchronization and data exchange between simulation tools

In the framework, various simulation tools with potentially heterogeneous behavior are
coupled. All tools must be synchronized in the progress of time to accurately exchange data.

Interfaces and protocols for coordination

The synchronization algorithm requires specified interfaces to the simulation tools to
coordinate them and a protocol is required to define coordination messages sent to the
different tools.

Generic interfaces to local simulators

Generic interfaces to the local simulators enable the co-simulation of various simulation tools
with the same framework. The simulation tools must only implement the interface.

Adaptable synchronization and communication step-size

The co-simulation is performed step-wise. Thereby, the accuracy and the performance of the
simulation depend on the step-size of the synchronization algorithm. An adaptable step-size
depending on the requirements of the use-case can improve both, the accuracy as well as
the performance.

4.1.2 Additional design goals for distributed co-simulation

Support for co-simulation requirements in distributed systems

The distributed co-simulation framework must support all the requirements defined for co-
simulation.

Distributed event calendar

The distributed event calendar is used to synchronize the simulation tools. Global knowledge
about the occurrence of events simplifies the procedure.

Support of remote procedure calls

The support of remote procedure calls enables the remote execution of functions in other
simulation tools.

Scalability

By providing scalability, multiple simulation tools can be easily integrated into the framework.
There is a reasonable overhead in integration effort, communication load, etc.

4.1.3 Design goals for applicability

Modular components

Modular components with defined interfaces can be easily integrated and exchanged.
Furthermore, the components can be considered as black box and the implementation must
not be known.

Re-usage of existing models with minimal changes

Supporting reusability of existing models with only minimal changes facilitates the integration
since manufacturers and suppliers can use models defined for other co-simulation
frameworks.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 35 of 79

Compatibility with existing standards and interfaces

There are already different standards for co-simulation available such as FMI. Compatibility
with the standards enables the usage of already existing tools compliant with the standards.

Hierarchical modelling

In the train network there might be components which are composed by networked
subcomponents. Using hierarchical modelling, the subcomponents can be co-simulated with
the rest of the train.

Expandability and adaptability of the framework

The architecture of the framework shall be expandable by further capabilities and possible
future simulation and validation techniques. The integration shall be easily assimilable.

4.1.4 Timing design goals

Synchronization of simulations using a global (simulation) time

Distributed control systems are usually based on a synchronized global time. If the simulation
time is also globally synchronized, the real-time behavior of the co-simulation is closer to that
of the real system.

Different time resolutions of simulations

There might be simulation tools with different time granularities. Those tools must be
connected and synchronized with each other as well.

Event management with correct temporal order

If events are not processed in the correct temporal order, the behavior of a distributed
system might not be consistent. Hence, the framework must ensure the correct timely
execution.

4.1.5 Configuration design goals

(Re-) configuration at run-time

To provide different use-cases for testing, the framework must be configurable at run-time to
prevent recompilation. Since the composition of trains is not fixed at run-time, reconfiguration
mechanisms useful in addition.

Configuration by files

The configuration of the subsystems in the framework is realized using files which save the
configuration data. Those files are all read by a central instance and the subsystems are
configured afterwards according to the data. This procedure automates the configuration
process since the user only has to trigger the (re-) configuration.

Interface for (re-) configuration

The components and the co-simulation framework must provide interfaces for (re-)
configuration.

Protocol for (re-) configuration over the network

A protocol for (re-) configuration over the network enables the (re-) configuration by a central
instance which sends the configuration data to each component. The protocol defines the
data-types.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 36 of 79

4.1.6 Security design goals

Confidentiality

Assures the non-disclosure of information (e.g. simulation data) towards entities, such as
users, processes or devices, unless they have been authorized to access the information.
This implies that no one is permitted to access or read the information/data except the
dedicated and authenticated receiver entity.

Authenticity

Represents the entities’ property of being able to be verified and trusted. The authentication,
regarded as a process of verifying the entities’ identity, is the assurance that an entity is
indeed whom it claims to be. The authentication process includes not only the verification of
an entity, but also the verification of a source and the related integrity of data.

(Data) Integrity

Assures that information/data has not been modified, whether intentionally or unintentionally.
The assurance of non-alternation implies that the information/data since creation (either in
transit or in storage) has not been undetectably modified.

4.2 Common aspects related to co-simulation

In this section, an overview about co-simulation is given. The section starts with an
explanation of the co-simulation mechanism (see Section 4.2.1). Afterwards, it presents
different approaches how heterogeneous simulation tools can be coupled (see Section 4.2.2)
and mechanisms, how the coupled tools can be synchronized (see Section 4.2.3).

4.2.1 The mechanism of co-simulation

Co-simulation frameworks are developed to cooperatively simulate complex systems by
using specialized simulation tools. They can be realized by porting components from one
simulator to another one which is time consuming and error prone due to simulator-
complexity. The solution of this problem is to run each simulation tool in its own process and
to connect them by the framework. [23]

Each tool has the responsibility on its own execution while the co-simulation framework
realizes the synchronized progress of time and the information exchange. Thereby, the
simulation tools do not communicate directly and maintain their own local state as well as an
internal simulation time. Typically, a discrete event simulator is coupled with a continuous-
time simulator. In that case, the simulation executes step-wise with a step granularity defined
by the discrete tool. At the beginning of a synchronization step, both tools have the same
simulation time [32]. A simple algorithm for synchronization can be described as follows.

The discrete tool uses the size of the time-step to set the simulation duration of the
continuous tool by sending the value via the framework. The continuous tool advances its
simulation time and stops either if the defined duration is reached or an event occurred. It
notifies the discrete tool about the event and additionally sends the monitored variables as
well as the internal simulation time. Afterwards, the discrete tool advances until both reach
the same simulation time again [32].

However, the papers cited in this deliverable define different synchronization algorithms.
These algorithms have various advantages with respect to the related use-cases.

4.2.2 Co-simulation in heterogeneous environments

A common application of co-simulation frameworks is the simulation of heterogeneous
continuous-time and discrete event-driven simulations. Typically, continuous-time systems
change their internal state continuously based on their inputs. The system dynamics are

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 37 of 79

represented by differential equations defining the transitions between the state variables.
These equations are discretized and the time base is divided into small steps such that the
system variables do not have a transition within a time step. [65]

This technique cannot be appropriately applied to discrete event-driven simulations since the
time-step is difficult to select. A small step will waste simulation time if the states remain
unchanged. Otherwise, using a long step, many events might be missed. In discrete event-
driven simulation, the system time hops between events based on an event list. This list is
managed by an event scheduler. The scheduler initializes the system state and the
chronologically ordered list at the beginning of the simulation and selects the event on top at
the correct instant. Afterwards, it wakes up the related process and adjusts the system time
to the next event. [65]

Due to the different character of both simulation techniques, a heterogeneous environment
requires a synchronization mechanism [65]. Hence, each simulator in a co-simulation runs its
own process while a middleware carries messages between the tools and realizes time
synchronization. Thereby, the middleware must ensure a consistent and on-time message
delivery. A consistent message is delivered to the destination when its time-stamp is less
than or equal to the current instant. Otherwise, it is out-of-order and cannot be processed
anymore. On-time delivery requires the message delivery at the earliest next time step. [23]

4.2.3 Synchronization mechanisms between simulation tools

Ciraci et al. [23] present the FNCS framework as a federated approach to integrate power
grid and communication network simulators. Providing a two-phase synchronization scheme,
co-simulations involving transmission and distributed level grid simulators with a
communication network simulator are supported. FNCS is implemented in C++ with
interfaces for C, Java and Fortran. Although it does not implement the HLA standard [26], the
framework follows the publish-subscribe design. This provides flexibility in integrated
simulations.

The main components of the framework are the FNCS broker, the communication and time
management components as well as the FCNS application component. The latter realizes an
application layer running the communication network simulator. For each node, one
component has to be created which forwards the messages. All simulators being federated
by FNCS need to register with the broker which runs as a separated process. This behavior
allows centralized control of the simulator processes. The communication between the
broker and the simulator is realized by the inter-simulation communicator component which
runs within the simulator processes. The communicator is managed by the communication
management component. It provides interfaces for sending and receiving messages which
can be used by extending the simulators. Re-use and flexibility are provided by identifying
the nodes with names. FNCS automatically identifies the destination node by its name and
delivers the message when it is safe. [23]

Finally, the synchronization scheme in [23] determines when to synchronize the simulators
according to in-transit messages and request next time steps. One possible scheme is the
conservative synchronization. It synchronizes the simulators at the smallest next time step of
the power grid simulators. An extension enables the detection of packet loss to prevent
unnecessary synchronization. Performance issues can be overcome using two different
synchronization strategies. Those are speculative failover and speculative recompute [23].
The speculative failover makes speculative decisions about the instant of the
synchronization. After a synchronization point, the parent process is duplicated. It continues
executing using the conservative synchronization while the child speculates that there is no
message exchange until the next synchronization point. If the speculation succeeds, the
parent process is terminated. In case of many message transmissions, process management
becomes costly. The speculative recompute technique allows child processes to run until
they send a message and learn about the sending instant. This information can be used to
speed up the simulation. Results show a performance improvement by 20% on average.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 38 of 79

However, further analysis shows that the strategies are most successful when there is a
large discrepancy in the simulators’ time steps or when they do not send messages
frequently.

Lai et al. [61] present a middleware with (i) interfaces to connect commercial power
(PSCAD/EMTDC) and communication (OPNET) simulators, (ii) a synchronization method for
the correct time and sequence of data exchange and (iii) a step adjustment algorithm
balancing the requirements of accuracy and efficiency. The interfaces in the simulation
software are provided by the software itself. Instead of using a continuous-time simulation,
the power simulation is solved in a discrete manner. The events from both simulators are
mixed according to their time-stamps preparing a uniform event-queue. When the simulation
starts, only one process runs. An event from the communication system implies a breakpoint
where the system suspends itself and starts to exchange information. Afterwards, the
process restarts repeating the synchronization. Thereby it is possible to adjust the next
synchronization point by including a command in the transmitted data. The algorithm uses
the communication delay and error information contained in the current time step.

VPNET [64] integrates the Virtual Test Bed (VTB) and the OPNET simulation tool. The
created co-simulation framework is capable of analyzing (i) how network performance affects
the behavior, stability and safety of the controlled power system and (ii) how demands from
the power system influence the design of the communication network. A co-simulation
coordinator serves as a communication data channel between the simulation tools. It acts as
a master managing the global communication step time and commands each simulator to
take the next simulation step. To exchange data, both simulators provide interfaces for
interaction. For example, the nodes in OPNET must contain an external Esys module to send
and handle packets and an Esys interface to interact with any external C code. Each
interface is bi-directional and multiple interfaces are possible. The reason is that each
interface only supports one data type. In VPNET, the communication is realized using
windows sockets for inter-process communication. Time synchronization between the
continuous-time driven VTB and the event-driven OPNET is realized using a global time
reference. This reference must run ahead of the local times and a sampling period decides
when the coordinator reads data from VTB. The sampled value is sent to OPNET which
simulates the network communication. During the delay, VTB executes with the previous
feedback value until a new value is received. The simulation steps are synchronized by the
coordinator which starts and stops the simulators.

The framework GECO proposed in [65] uses a global event-driven mechanism whose
accuracy is tunable based on the time-scale requirements. GECO co-simulates continuous-
time power systems (using PSLF) and event-driven communication networks (using NS2)
realizing a heterogeneous environment. A simple synchronization mechanism would be an
explicit time-stepped synchronization where several synchronization points are predefined.
At these points, the simulations exchange information while they run independently in
between. This method can easily cause simulation errors. The reason is that an interaction
request appearing between the synchronization points can only be served at the next point.
The error can be the same as one synchronization time step and might accumulate over
time. However, it does not exist in real systems. The synchronization mechanism in GECO
avoids these errors since the framework runs in a globally discrete event-driven manner.
Each iteration round is treated as a special discrete event which are organized in a global
event list according to their time-stamps. A global event scheduler realizes the global time
reference and acts as a coordinator. Similar to the simple approach described above, the
scheduler selects the next process with respect to the event list. However, the process can
suspend itself after an event and yield the control back to the scheduler. In this way, each
event can be processed immediately by the scheduler without any delay. By the coupling, the
output event of the power simulation is the input event of the communication simulation and
vice versa. As a mathematical formalism realizing the coupling, the Discrete Event System
Specification (DEVS) is used. In the implementation, the global scheduler as well as the
event list is derived from the NS2 simulation tool. A bi-directional C++ interface is

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 39 of 79

implemented between the two simulation tools to control the execution. Additionally, it is
possible to integrate different simulation tools. However, this requires support from the tools
and the coordination between them might be difficult.

4.3 Functional mock-up interface and High Level Architecture

The Functional Mockup Interface (see Section 4.3.1) and the High Level Architecture (see
Section 4.3.2) can both be used to connect various simulation tools. Hence, the following two
sections first present the standards as well as their (dis-) advantages. In the following
section, possible combinations to overcome the disadvantages are illustrated.

4.3.1 The Functional mock-up Interface

The Functional Mockup Interface (FMI) is a tool-independent standard used to exchange
dynamic models or to co-simulate them [15]. For this, it provides an interface which is
implemented by more than 30 tools for version 1.0 and more than 25 tools for version 2.0. [8]

Tool-independent modeling languages aim at the ease of model exchange between different
simulation tools. Many modeling languages provide low level interfaces for the exchange of
models and their co-simulation but, in contrast to FMI, these interfaces are not standardized
[15]. While there were different interfaces for both use-cases of FMI available in version 1.0,
the main advantage of version 2.0 is the integration of both interfaces in one standard.
Additionally, small details were improved and new features introduced. Hence, the usage of
the standard is simplified and the performance is increased. [14]

FMI mainly consists of two parts, the interfaces for Model Exchange (ME) and for the co-
simulation. The first interface aims at the creation of a modeling environment which is able to
generate C-code of a dynamic system model. Another simulation environment is hence able
to use the generated code as an input/output block. In general, models are described by
differential, algebraic and discrete equations with time-, state- and step-events. The second
type of interfaces is used for co-simulation. In such environments, two or more simulation
tools (slaves) are coupled by a master algorithm. This algorithm is responsible for the
synchronization of the simulation tools and the exchange of data between them at discrete
communication points. In between, the subsystems are solved independently by their own
solver. If the master algorithm connects models for model exchange, it also solves the
models [14]. Although FMI supports different algorithms, it does not define one in the
standard [25].

Components implementing FMI are called Functional Mockup Units (FMU). They consist of
one zip-file which includes an XML-file, the model and, optional, additional data. The XML file
contains the definition of all environmental variables as well as other information about the
model. Capabilities of the slaves like the support of advanced master algorithms are included
in a slave-specific XML-file. The model is deployed by a set of C-functions as source code or
in binary for different platforms. Depending on the use-case, the code contains either the
model represented by model equations (model exchange) or functions (i) to initiate a
communication with a simulation tool, (ii) to compute a communication time step and (iii) to
perform the data exchange. Further information may include documentation files or utilized
libraries. [15]

In Cyber-Physical Systems (CPS), physical processes in an environment are controlled by
embedded computers and networks [63]. Hence, these systems contain different domains
like continuous-time and discrete event. Due to the different domains, there are various
semantic gaps like untimed vs. timed semantics and signals vs. events [99]. There are
several approaches bridging the semantic gaps between heterogeneous modeling
formalisms. Tripakis [99] provides a complete methodology for modeling and simulation of
heterogeneous systems. Those systems can be finite state machines like Mealy or Moore
machines with their untimed semantics or a discrete event actor such as those used in
Ptolemy. However, FMI uses a timed and persistent signal-based semantics. Tripakis models

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 40 of 79

different subsystems with various languages and tools. From each subsystem, he generates
one FMU. Furthermore, he uses the results from [17] to co-simulate the subsystems. Müller
et al. [73] embed FMI components for model exchange in the discrete event domain of the
Ptolemy II simulation environment. This generic framework is used for the simulation of
heterogeneous systems. It provides a discrete event and a continuous-time domain among
others. Thus, many models could be described only in the simulation environment. Müller et
al. [73] present the calculation of continuous results in advance to improve the simulation’s
performance. Additional advantages are the easier and faster model implementation as well
as scalability of the approach. For this, they use the FMI++ library which is a high-level C++
utility package on top of the FMI ME specification. It provides several functionalities for
handling FMUs which are not covered by FMI itself.

According to the authors of [27], CPS could benefit from a methodology which is capable of
(i) rapid prototyping, (ii) the arrangement within well-defined hierarchies of possibly hybrid
paradigms, (iii) distributed co-simulation in different (hardware) platforms and (iv) exploiting
high performance computing resources. They target at the combination of different tools
within a co-simulation framework and to enhance them by flexible prototyping capabilities of
new components. For this, the authors suggest the Modelica language as a rapid prototyping
platform which is assimilable to other tools using FMI. They address the impact of
transferring Modelica into different classes of simulation tools such as general-purpose,
domain-specific or academic research-oriented simulation environments. Examples are
GridLab-D, TRNSYS and the HLA.

In safety-critical systems, deterministic execution is one important aspect to provide safety
guarantees (see [56], Ch. 11.3.3). Broman et al. [17] focus on the deterministic execution of
FMUs under the FMI standard. They implement a co-simulation where one FMU either
contains its own internal simulation algorithm or serves as a gateway to a simulation tool.
Deterministic co-simulation can be reached using optional capabilities from FMUs. If FMUs
lack these functionalities, basic modeling capabilities like simple discrete event simulation or
variable step-size numerical integration become unachievable. The provided extensions of
the standard as well as policies for designing FMUs enable a master algorithm to query an
FMU for the time of events being expected in the future. Furthermore, they show the
possibility of deterministic execution if all FMUs are either memoryless or implement one of
rollback or step-size prediction.

The master algorithm presented in [17] is exploited in [25] to reach deterministic execution.
The authors provide an IDE called FIDE for building applications which use FMUs. FIDE is
based on the Ptolemy II simulation environment and utilizes its user interface, its simulation
environment as well as the code generation feature. The user interface facilitates the
arrangement of a collection of FMUs into an ensemble. This ensemble is further compiled
into a stand-alone application by an automated process. The approach bypasses the
Ptolemy II execution environment supporting different master algorithms and possible
extension to the API as defined by FMI. Using the master algorithm and the extensions by
Broman et al., the co-simulation of continuous and discrete dynamics becomes possible.
Preliminary results indicate a significant performance advantage of the author’s master
algorithm over the Ptolemy II execution engine.

A communication step size control algorithm is given by Schierz et al. [90]. They extend the
results from [7] on reliable error estimation and communication step size control. Based on a
mathematical analysis, the asymptotic behavior of the local error and two error estimates is
studied. Both of them are candidates to adapt the communication step size automatically to
the changing solution behavior during time integration. To analyze the local error, an error
estimate is calculated and compared to user-defined tolerances. In case of coupled systems
without algebraic loops, the global error is bounded by a multiple of the local error. The
extrapolation of Richardson [85] is time-consuming but reliable. Schierz et al. extend the
algorithm tailored to FMI CS which results in substantial savings of time. Using the local
error estimate, a new communication step size can be calculated. Controlling the steps can

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 41 of 79

significantly improve the performance of the master algorithm, especially the computing time
and the accuracy.

4.3.2 The High Level Architecture

The High Level Architecture (HLA) was developed by the U.S. Modeling and Simulation
Coordination Office and has many similarities to FMI [10]. Using HLA, individual components
(federates) can be connected to a set of interconnected components called federation. A
federate may be a computer simulation, a supporting utility or an interface to a live partition
[26].

Since the HLA was designed at a level independent of any languages and platforms, it can
be considered as a protocol. Therefore, it supports solutions to the most common problems
of interoperability [10]. All object representation is contained in the federates and the HLA
imposes no constraints on what is represented or how, respectively. It only requires specified
capabilities for the interconnection with other federates by the exchange of data.

Data exchange is realized using services implemented in the Runtime Infrastructure (RTI)
which acts as a distributed operating system for the federations. To interconnect federates,
the RTI provides basic services for data exchange or management of (i) objects, (ii) time or
(iii) data distribution. Those services can be accessed via an interface supporting runtime
interaction among federates and responding to requests from the RTI. The interface defines
a functional way to access the services as well as an API. This API is available in different
languages like C++, Java, Ada or the CORBA IDL.

Alongside interoperability, the HLA was designed for the reuse of the components. To reach
this, each federate must document its object model using a standard Object Model Template
(OMT). This model is intended for information sharing to facilitate the reuse [26].
Strassburger [96] lists four possibilities to make a simulator compliant with the RTI. Those
are (i) to modify the simulator’s implementation with appropriate extension, (ii) to add custom
modules to the simulation tool, (iii) to use an external API defined as a, e.g., dynamic link
library and (iv) to couple the tools by a proxy if they support facilities for external
communication. Such communication mechanisms might be files, pipes or sockets.

4.3.3 Combinations of FMI and the HLA

There are different approaches combining the HLA and FMI. Awais et al. [10] propose to use
the RTI for providing a generic and standalone master algorithm. The goal is usability such
that components can be plugged and played on a variety of distributed environments. Using
the RTI as a generic master provides time synchronization, mechanisms to access and
modify a federate’s state as well as the support of events. The latter is not fully supported in
FMI 1.0 [10]. In the HLA, federates are capable of publishing data which is used by one or
more subscribers. The description of the inputs and outputs is defined in a model-description
file and the hosting code can perform the actions generically. For this, the description file
contains directives declaring the variables’ types or names among others. Since FMI does
not support complex types as yet, all attributes of an FMI-federation can be accumulated in
one class of the Federation Object Model (FOM) of the HLA. In this case, each FMU-federate
creates a new instance of the main FOM class and gets updated if it subscribes to related
attributes. Hence, an FMU-federate is an FMU which is compatible to the HLA. Ownership
management separates the access to an attribute to only one federate. If the federate
already ensures that kind of access, complex methods for the management are not
necessary. FMI for co-simulation only partially supports events by using the function
StepFinished(). Indeed, this function does not supply precise timing in FMI 1.0 while RTI
provides this functionality by default. Their implementation of a simple application shows
great opportunities of integrating both standards although there were some limitations in FMI
1.0.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 42 of 79

In [11], Awais et al. show, how the strengths of the HLA and the FMI are utilizable for
realizing a distributed heterogeneous simulation platform which supports different types of
simulations in conjunction. Those may be fixed time-stepped simulations, continuous-time
simulations or discrete event simulations. The authors present two kinds of FMU-federates, a
fixed time-stepped as well as a discrete event-based. The first type progresses in fixed time-
steps typically using the HLA “time advance request” and “time advance request available”
services. A discrete event-based FMU-federate proceeds based on internal and external
events. This kind uses the HLA “next event request” as well as “next event request available”
services. The process of time based on events requires to look in the future and to predict
the instant of the next event. Both types of federates are generic unless there are limitations
by the simulation tools. To support the requirements of both types, they present two different
algorithms. These algorithms are based on the idea of zero lookahead based simulations. A
lookahead is the minimum amount of time within which a federate will not generate any new
event. The first algorithm is a fixed time-stepped algorithm. In a heterogeneous environment,
the fixed step size may be a problem since there might be loss of information. One solution is
the usage of episodic simulation in which the lookahead can be zero and federates may have
different time steps. This is possible due to the HLA “time advance request” and “time
advance request available” services. However, in case of variable step sizes, the “next event
request available” service should be used instead. If the federates demand equal time
advances, they stay in synch and have the possibility to exchange data at the end of an
episode. It is guaranteed that updates created from a federate running on a slow machine
will be delivered before the end of the period. The discrete event algorithm uses a function to
predict the instant of the next event. For this, the function analyzes the output produced by
the models. Its significant advantage is the reduction of the number of events compared to
the fixed step size algorithm.

While the papers previously mentioned only refer to using HLA as a master for FMI, Garro
and Falcone [34] investigate how to combine both standards from two perspectives. These
are on the one hand HLA for FMI (i), on the other one FMI for HLA (ii). To support the first
case, some extensions to FMI to include HLA are presented. The model description XML file
is extended using tags which cover specific HLA functionalities. Those are, e.g., settings for
time, declaration or ownership management among others. Additionally, a C/C++ shared
library is created which defines related HLA commands. Hence, the model defines the FMU’s
simulation logic according to FMI and uses the HLA features to make the FMU compatible
with the HLA-based simulation environment. Advantages of this approach are (i) greater
integration and execution control of FMUs in a HLA federation, (ii) reduced development cost
and time since an FMU becomes reusable and (iii) better performance due to distributed
parallel execution of FMUs sharing the same HLA simulation platform. However, this solution
requires an extension of the FMI standard as well as adding capabilities to the FMU solvers
for interpreting and executing HLA-based operations. With respect to the second case (FMI
for HLA), two approaches based on well-known design-patterns are proposed. Those
approaches are adapter- or mediator-based. The adapter is composed of two elements. The
first one is an FMU containing the component’s behavior and its solver while the second
component is the adapter. It manages the communication between the FMU and the RTI as
well as the FMU’s lifecycle. The adapter is mainly a design pattern which connects the
interfaces of two components without changing the components’ source code. This software
layer interprets the application specific services and provides capabilities for communication
and monitoring. However, the structure of the mediator differs from the adapter. It consists of
a set of FMUs, each defining a dynamic model, and an HLA federate. The latter contains its
own simulation logic and uses the FMUs to simulate specific components. In fact, the
mediator is a software layer encapsulating the modalities for the interaction between the
FMUs and the HLA federate. Since the FMUs and the federate can only communicate via the
mediator, dependencies between them are reduced and coupling is lowered.

Neema et al. [75] identify challenges of integrating FMUs for co-simulation (CS) in general
and via the HLA presenting a novel model-based approach. This approach can rapidly

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 43 of 79

synthesize an effective integration of available FMU-CS components with specialized
simulation packages. The authors target on the co-simulation of CPS using different solvers
and step sizes to overcome significant non-linearity and discontinuities. If the system is split
at the wrong place, inefficiencies due to time management, composition restriction, data
exchange and stability issues may be introduced. The problem of distributed simulation is
solved using the HLA. Its key benefit is its distributed discrete event model of computation
which allows flexibility to use any internal solver and model of computation. However, the
HLA does not formalize any methods for developing interactions and models used by the
federates. Furthermore it does not provide mechanisms to easily move simulations between
the nodes. Additionally, the HLA needs a significant amount of hand-developed integration
code which is tedious and error-prone. Using the HLA as a master for co-simulation of FMUs
provides flexibility to exploit other simulation types. Neema et al. develop a platform which
addresses important challenges like modeling interactions and shared objects, data
exchange mechanisms and modeling the deployment of distributed simulation tools.
Additionally, the platform provides a standard master algorithm for FMI co-simulation, multi-
rate modeling with dynamic time-management as well as a toolset to generate necessary
objects for rapid synthesis of simulations. The approach is based on the author’s Command
and Control Wind Tunnel (C2WT) [42] and automatically wraps FMUs to HLA federates.
Those can be simulated with different clocks while time management is realized by the HLA.

C2WT is a distributed simulation environment for large-scale command and control systems.
It enables the interaction and communication of different simulation engines and it relies on
the services of the HLA and its RTI. Developing the integration code for the HLA as well as
testing and deploying various run-time components across multiple platform-specific
simulation tools is highly challenging. C2WT provides a holistic modeling and management
environment using a custom Domain-Specific Modeling Language (DSML) implemented in
the Generic Model Environment (GME) [75]. DSML is able to capture integration information
about the model’s configuration and its role in the environment. For this, the language
provides all the primitives required to specify the integration, deployment and execution of
the simulation [42]. The platform is additionally related to a suite of model interpreters for the
coordination between the integration model and the platform-specific simulation tools. It
facilitates the rapid development of models and their usage throughout the simulation
environment’s lifecycle by automatically generating the integration code. Beyond, C2WT
supports real-time and as-fast-as-possible simulation execution. However, the current real-
time simulation requires an execution which is faster than real-time. Human interaction can
be performed using HLA-interaction mappings. Furthermore, the platform supports extensive
experimentation, message and state variable logging as well as analysis functionalities [75].

4.4 Internet-based co-simulation

In the next sections, different approaches for Internet-based co-simulation are presented.
Those are mainly settled in the research-area of electric power grids, but also in network
control systems and networked multi-core chips. First, techniques for coupling tools via
TCP/IP-sockets are shown in section 4.4.1. In section 4.4.2, approaches for distributed co-
simulation follow.

4.4.1 Co-simulation via TCP/IP sockets

Today, the TCP/IP-stack is mainly used for communication via the Internet. In this section,
different approaches for co-simulation using the stack to communicate are presented.

Harding et al. [41] introduce an interface between MATLAB and OPNET to allow the
simulation of Wireless Networked Control Systems (WNCS) with Mobile Ad Hoc Networks
(MANET). In this use-case, the WNCS is simulated using MATLAB while OPNET simulates
the network. Thereby, there are two instances of MATLAB used, one for a controller and
another one for a plant. OPNET uses threaded sockets to wait for messages which are
forwarded to the tool via the Esys API. The related sockets in MATLAB use Java sockets

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 44 of 79

instead. A value to be sent is encapsulated into a packet and sent to the controller processes
in OPNET and vice versa. The arrival of a message to a process in OPNET is signaled by an
Esys interrupt caused by the co-simulation.

A co-simulation platform combining OPAL-RT for power and OPNET for communication
system simulation is presented in [13]. This platform supports simultaneous simulations of
power and communication systems in real-time but also in non real-time. In case of the latter,
two simulators run separately but synchronization is not necessary. One tool runs until it
finishes and stores its results in a file which is used as input for the other tool afterwards.
Only the simulation time must be synchronized to realize accurate information exchange
between the simulations. Due to the asynchronous operation of two simulators, the accuracy
of the results might be limited. In contrast, real-time co-simulation requires an interface for
information exchange and synchronization. The proposed platform exploits the interface as a
data buffer which allows real-time packet exchanges using protocols like TCP or UDP. A
use-case to test the platform is placed in the context of a distributed automation application.
In it, the nodes are connected by Ethernet and Wi-Fi.

The approach illustrated in [78] deals with networked multi-core chips in contrast to the
previous platforms that concentrate on the simulation of distributed power grids. In such
systems, multiple multi-core chips based on a network-on-chip are interconnected building
up a distributed system. Such systems are co-simulated using Gem5 for the chip-level and
OPNET for the cluster-level. For the connection and the synchronization of both discrete
event simulators, local simulation controllers are introduced as additional components. The
usage of TCP/IP sockets enables the execution on multiple physical machines. In this
environment, the local controllers determine the satisfaction of dependencies to perform a
simulation step. The execution of the simulation tools is based on its own local event
calendar. Additionally, a global calendar contains events that have causal relationships in the
co-simulation. The calendar represents the execution order’s time model and is used to
synchronize the simulation tools. Thereby, each event in the local calendar must be
managed and modified using control messages. To perform the communication, the local
controllers provide interfaces from and to the network and introduce basic gateway
functionalities. Examples of such functionalities are queuing and mapping of messages.
Furthermore they are responsible for converting the message formats and for mapping the
incoming message’s destination address to the target application. Synchronization is realized
by a socket-based interleaving approach. It exchanges data and provides access for mutual
modification of local calendars. At one time, only one simulation tool is running mutually
exclusive based on both local calendars. If one tool requires sending a data message, the
tool is suspended and an interrupt is sent to the other tool signaling the communication
request. As soon as an answer arrived, the simulation can continue.

4.4.2 Distributed co-simulation frameworks

Besides a parallel execution of simulators in geographically distributed machines connected
via LAN or WAN (Wide Area Network), distributed co-simulation has further advantages. It
allows (i) project decentralization, (ii) design and validation of a system by geographically
distributed teams, (iii) intellectual property management where a component is simulated
without publishing its description, (iv) simulator’s license management and (v) resource
sharing. Although parallel resources are usable, there is network communication overhead
which might increase the co-simulation execution time. Using a local simulation does not
introduce a communication overhead. Indeed, it does not present the benefits of a distributed
co-simulation. [5]

Amory et al. [5] depict a hardware and software co-simulation tool composed by
geographically distributed computers which communicate via a co-simulation backplane. The
backplane reads a file describing how the tools are connected, launches the simulators and
controls the simulation process. The authors present a heterogeneous approach that can be
used on different system levels like architecture-level or cycle-level. Their co-simulation tool

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 45 of 79

validates each module of the design according to its language and manages communication
between the simulators. While the co-simulation is evaluated in terms of CPU time for
finishing in a distributed system, the paper additionally presents an evaluation of the CPU
time used for simulation and communication. In the environment, the user must add the
appropriate communication library to each module. Software modules are described in C
using ComLibC whereas VHDL (Very High Speed Integrated Circuit Hardware Description
Language) is used for hardware components (ComLibVHDL). As an interface between VHDL
and the C code, FLI can be used which is an extension of VHDL. The communication library
encapsulates the communication primitives to the co-simulation backplane and realizes the
communication using UNIX sockets. However, coordinating the communication is the
backplane’s main functionality. It is independent from simulators and new languages can
easily be integrated. A coordination file describes the modules being instantiated with related
information like name, host, simulator, etc., and the connections between them. In contrast,
the lack of portability of the C/VHDL interface is one weakness in addition to a missing global
synchronization mechanism. Furthermore, the communication between in the co-simulation
introduces an overhead as shown by the simulation results.

Another co-simulation environment for electric power grids and communication networks is
the Federated Simulation Toolkit (FSKIT) [54]. It couples the GridDyn simulation tool (power)
with the ns-3 network simulator. FSKIT is a high-performance dynamic simulation platform
supporting large-scale integrated transmission, distribution and communication systems. The
platform acts as a middleware providing time control on the one and facilitating
communication between federates on the other hand. A simple and lightweight design
enables the coupling of multiple continuous-time and discrete event parallel simulations.
Maintaining the correct temporal order of events is realized by three different approaches, a
conservative, a fixed time step and an optimistic one. The first approach synchronizes all
events which maintains the correct order but introduces many synchronization points. A fixed
time step approach synchronizes the events in regular intervals. On the one hand this
behavior improves execution effectiveness and parallelism, on the other one it may introduce
delays in the event delivery. At last, the optimistic approach uses speculative execution
maintaining accuracy. However, the requirement of roll-back capabilities of the simulators
can have a significant impact on their implementation. FSKIT provides an asynchronous API
which allows overlapping communication and execution. Since FSKIT is designed for high
performance platforms, it uses the Message Passing Interface (MPI) for inter-process
communication. Besides high performance, MPI also enables the communication between
processes on distributed hosts. To be coupled with FSKIT, a simulation tool is wrapped in a
class inheriting from a FederatedSimulator interface. This interface contains the required
functions to advance time and the resulting class is registered with FSKIT. The registration is
also performed to communicate which is realized using LogicalProcess objects. Therefore,
FSKIT provides a parallel scheduler that controls the parallel time advancement on the one
and functions for sending an event message on the other hand.

The electric power and communication synchronizing simulator (EPOCHS) [43] is a
distributed simulation environment for electric power and communication co-simulation. It
integrates multiple research and commercial off-the-shelf systems using different simulation
tools. Those tools are the PSCAD/EMTDC electromagnetic and the PSLF electromechanical
transient simulators as well as NS2 for network simulations. EPOCHS is based on the HLA
and agents. Hence, the simulation engines can be federated only using their built-in APIs
and the framework hides the complexity in combining simulation systems. AgentHQ is a
unified environment for agents which act like proxies. It provides functions to send and
receive messages and is a discrete event system. All events are processed as they occur
and they are routed to the affected agents. The events’ temporal order is maintained using a
time-stepped model. All federates simulate until a defined simulation time is reached and
synchronize themselves via the RTI. Before the simulations continue execution, the RTI
selects the next synchronization point based on fixed time-step lengths. Those lengths are
user-selectable for each step. Sending the messages between the simulators is controlled by

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 46 of 79

AgentHQ in a round-robin manner. However, it is also possible that the discrete event
simulator NS2 receives a communication request between two synchronization points which
requires interaction with the power simulation. In this case, the agent queues the message
until the next synchronization point occurs. Indeed, this mechanism may lead to errors as
explained above.

4.5 Security mechanisms applicable for secure communication in
distributed validation frameworks

This section deals with the cryptographic security mechanisms and the related techniques in
the field of symmetric and asymmetric encryption necessary for a secure communication.
Since data integrity plays a major role in the assurance of the accuracy of communication
data transferred within a channel, the focus especially lies on techniques for the assurance of
data integrity and authentication.

4.5.1 Data Integrity and Cryptographic Hash Functions

Data integrity assures and maintains the accuracy of data and aims on preventing
unintentional changes to information. Furthermore, it mainly affects reliability, safety,
confidentiality and integrity attributes of a safe and secure system. Problems in that domain
comprise unintended changes to data due to storage, retrieval or processing operations. This
also includes targeted changes, unexpected hardware failures, human errors and malicious
attackers. Measures to preserve the integrity of data are diverse, including the application of
hash functions as well as checksums and cyclic redundancy checks.

Integrity protection may be based on symmetric authentication techniques. In that case, the
same secret key is required for generating as well as verifying a Message Authentication
Code (MAC). The MAC is a cryptographic checksum that authenticates a message. In
general, hash functions or symmetric encryption algorithms are used to generate MAC
values. The number of secret keys required to be distributed through a secure channel grows
exponentially with the number of network components. The reason is that each pair of
components needs to agree on an individual key.

Cryptographic hash functions play a fundamental role in data integrity and message
authentication. A hash function creates a digital fingerprint of an input string by mapping bit-
strings of arbitrary finite length to a string of fixed length. Message authentication codes
represent a distinct class of hash functions which require the secret key besides the input
string (the message, respectively) as the functional input. MACs are designed to produce a
fixed-size output independent of the input string’s length. This output is practically infeasible
to reproduce without the corresponding symmetric secret key. A MAC value is calculated
either using a hash function (Keyed-Hash MAC (HMAC)) or a symmetric cipher (CMAC). As
only the knowledge of the secret key permits the generation and verification of the MAC, this
key must be shared with all possible validators.

4.5.2 Private-Key Cryptography

The private-key cryptography, also known as symmetric encryption, uses the identical key for
both encryption of messages and decryption of ciphertexts. Based on the short encryption
keys compared to those of the asymmetric encryption, the encryption speed is much faster.

However, the main drawback of symmetric encryption relies on the key distribution since
there is only one key for the en- and decryption. In order to establish a secure
communication based on symmetric-key algorithms, the key has to be distributed securely
over all participating entities. A further problem is the damage on securely stored data when
the secret key will be compromised. Since the key is shared with the opposite entity for a
secure two-way communication, an attacker could get hands on ciphers and decrypt all of
them with the gathered secret key. Therefore, a new key has to be generated and newly
distributed in case of a disclosure of the secret key.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 47 of 79

The most common and widely used symmetric-key mechanisms are AES (Advanced
Encryption Standard) and 3DES (Triple Data Encryption Standard).

4.5.3 Public-Key Cryptography

Public-Key Cryptography (PKC), also known as asymmetric encryption, represents a
cryptographic system based on key pairs. Those key pairs represent the main difference in
comparison to the private-key cryptography. On the one hand, an asymmetric cryptographic
system contains a private key (also referred to as a secret key) which belongs to the owner
and is only known by him. On the other hand, it includes at least one public key. This key
may be publicly distributed in order to allow entities to operate with the cryptographic system.
While the public key can be only used to encrypt messages, the private key is utilized to
decrypt the received messages encrypted by the public key.

Public-key cryptosystems represent a fundamental security component of various Internet
standards, such as the TLS (Transport Layer Security) protocol. There are various types of
public-key algorithms known and certain PKC algorithms fulfill single functionality. While
some algorithms provide only a key distribution and secrecy function, others offer only digital
signatures. Nevertheless, there are commonly used PKC algorithms which are able to
provide both functionalities. Basically, there are various asymmetric encryption techniques
known. Since digital signatures represent an important component for data integrity and
authenticity, the subsequent focus lies only on digital signature-providing algorithms. Those
are RSA, Digital Signature Algorithm (DSA), Elliptic Curve DSA and Edwards-curve DSA.

4.6 Research gap for state-of-the-art

One goal of the distributed simulation and validation framework is the connection of various
simulation tools and even physical devices in a discrete event co-simulation over the
Internet. To reach this goal, the initial requirements and design goals described in section 4.1
need to be fulfilled. Important aspects are scalability and generic interfaces to the simulation
tools as well as a mechanism for data exchange and synchronization.

Most of the frameworks for Internet-based co-simulation described in section 4.4 provide a
mechanism for synchronization and data exchange in distributed co-simulation over the
Internet. They couple the continuous-time domain needed for simulated plants with the
discrete event domain required for the simulation of networks and control applications
realizing discrete event simulations. Tools like FSKIT or FNCS are designed to support
efficiency and high performance while the framework described in [61] supports an adaptable
communication step-size.

However, the frameworks all suffer from main disadvantages. They are all designed for
specific simulation tools without any generic interfaces or compatibility to existing standards.
Determinism and reproducibility as HIL/SIL co-simulation are both unaddressed as well as
distributed event calendars. Furthermore, the aspect of applicability is not considered.
Although the approaches provide the possibility to re-use simulations designed for the
coupled tools, modularity of components or to plug and play them are unattended. Another
lack concerns the requirements for configuration. Except the framework described in [78],
none of the other authors points out whether their tools are configurable or not.

Both, the FMI and the HLA can be used to overcome the lacks of adaptability and
interoperability. The standards are designed to connect and re-use existing models of
various existing simulations as long as they are compatible. While FMI provides generic
interfaces to the simulation tools, it suffers from a master algorithm which synchronizes the
simulations and provides a mechanism for data exchange. However, the combination of FMI
with the HLA solves the problem. There are different approaches described in section 4.3.3
where FMI exploits the RTI of the HLA to act as a master. These approaches realize a
distributed discrete event simulation where different domains are coupled. Other references
provide solutions to address most of the remaining requirements. For example, [25] and [17]

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 48 of 79

both address determinism and reproducibility of simulations, C2WT [42] provides a
heterogeneous, scalable platform and [11] as well as [90] present an algorithm for adaptable
communication step-size.

Although many requirements and design goals for the distributed co-simulation framework
are covered, there are still unsolved problems. The approaches do not use distributed event
calendars or support remote procedure calls. Furthermore, there are the same lacks for
configuration requirements like in the Internet-based co-simulation frameworks. With respect
to timing requirements, [75] supports different time-resolutions of the coupled simulations
while the C2WT framework manages events with the correct temporal order. Indeed, the
other authors do not address any timing requirements.

The applicable security mechanisms and their algorithm parameters strongly depend on
available hardware resources of the participating entity, mainly on the present computational
power. Therefore, dedicated cores for cryptographic calculations as well as for secure key
storage are often not considered for embedded systems. A further security gap in the domain
of low computational power entities is the physical location and accessibility. Those entities
are more vulnerable against malicious attacks and therefore represent a major threat to the
overall secure environment.

Due to their properties and the coverage of many requirements defined for the distributed co-
simulation framework, the combination of FMI and the HLA is a promising approach.
Therefore, the research gap contains two parts. On the one hand, the different extensions of
FMI have to be combined to address the remaining requirements for co-simulations. On the
other hand, further solutions are required. Those solutions are related to the requirements for
distributed co-simulation, timing, configuration and security of the framework.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 49 of 79

Chapter 5 Safety

5.1 Initial Safety Requirements

The distributed simulation and validation framework is a tool to test a safety application.
Assuming this tool “cannot introduce errors, but may fail to detect them” [101] and the
principle that testing cannot prove the absence of errors - the derived safety requirement is:

Distributed simulation and validation framework – error detection capability

The distributed simulation and validation framework shall be able to detect all types of
errors in a safety application that are relevant to the used test level.

The tool’s error detection capability is sufficient if it fully supports the needs of the safety
application validation (see chap 5.1.1) and is provided with adequate quality (see chap.
5.1.2).

5.1.1 Support for safety application validation

In order to support the safety application validation, the distributed simulation and validation
framework must meet the expectations of the surrounding processes using it. Also the
application safety functions to be validated and the safety related tool chain interfaces have
to be satisfied. The tool must support the configuration and evaluation of its behavior in terms
of real world characteristics (e.g. timing etc.). Chapter 6 and Chapter 7 of the present
document contain more information about how the framework will support the safety
application validation.

5.1.2 Qualification of the distributed simulation and validation framework

For using the distributed simulation and validation framework as a tool in the development
process of a safety system, a tool qualification shall be performed. The goal is to generate
evidences that it is free of faults which avoid the detection of errors in the developed safety
system. For an adequate tool qualification of the distributed simulation and validation
framework, the below mentioned tasks have to be performed.

Tool Risk Assessment

A risk assessment of the intended tool usage and relations to surrounding processes is
needed to allow the evaluation of the safety related impacts caused by possible tool failures.

Tool Qualification Plan

State the tool classification according to the applicable standard EN 50128 [21] to mitigate
safety related impacts caused by possible tool failures. The identified tool configuration, tool
activities in the development process and tool qualification activities are described.

Tool Operational Requirements

Specify tool operational requirements derived from surrounding process expectations and
interfaces to the tool chain. Stakeholder input shall be used for requirements that cover
expected functional behavior, expected indication of abnormal activation modes as well as
inconsistent input and the operational environment (operating system and hardware). The
requirements shall also clarify information necessary for the tool’s installation as well as
operation and which software development processes are performed by the tool.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 50 of 79

Tool Qualification Records

Record the results of the tool qualification activities (for example, test cases, procedures, and
results).

Tool Configuration / Quality / Change Management Records

Record the configuration- (e.g. configuration identification lists, baseline, etc.), quality- (e.g.
QA review or audit reports, meeting minutes, etc.) and change- (e.g. Problem reports,
change requests, etc.) management process activities.

Tool Quality/ Configuration/ Change Management Audit

Perform a quality, configuration and change management audit.

Tool Qualification Accomplishment Summary

Create a summary about tool status (Intended usage, integrated toolset functionality, fault
handling, configuration, maintenance, identified shortcomings) about the compliance with the
tool qualification planning.

5.2 State-of-the-art

The state-of-the-art safety aspects regarding the distributed simulation and validation
framework are not specific to its function but to its nature as a tool used in the development
process of a safety system. The expectation from such a tool is that it is free of faults that
prevent the detection of errors of the safety system. A minimum quality of the tool must be
demonstrated to get evidence for the claimed freeness of faults. The process and method to
generate such evidence is commonly called tool qualification.

Tool qualification is a long time research and standardization issue in the aircraft industry.
The following analysis results are based on one output “Tool Qualification in Multiple
Domains: Status and Perspectives” [48] of these activities that covers the status up to 2014.

5.2.1 Tool Categorization

All standards categorize tools based on the potential impact of a tool failure in combination
with additional measures provided by the safety application development process. ED-12
(DO-178) [29], ED-215 (DO-330) [30] and ISO 26262 [47] currently have the most elaborated
categorization.

The tool failure impact can be summarized by:

1. Tool failure does not impact the executable code (including data) of the safety
application directly or indirectly.

2. Tool failure impacts the test or verification of the design or executable code. Errors in
the tool can fail to reveal defects but cannot directly create errors in the executable
software.

3. Tool failure impacts the executable code of the safety application directly or indirectly.

Additional measures to prevent or detect tool malfunctioning may be manual checks of the
tool output or divers tool chains among others.

The tool failure impact defines the rigor of the required tool qualification. This definition is
combined with measures that prevent the tool from malfunctioning or detect that the tool has
malfunctioned. The rigor of tool qualification - the tool category - is defined by the tool
classes T1..3 (EN 50128, EN 61508), the tool qualification levels TQL-1..5 (ED-12, ED-215)
or by the tool confidence levels TCL1..3 (ISO 26262).

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 51 of 79

5.2.2 Requirements on Tool Qualification

All standards put requirements on the tools qualification based on their tool category. ED-
215 (DO-330) currently has the most elaborated requirements.

An overview of common tool qualification requirements with basic rigor requirements
(justification or evidence) related to tool category (T1, T2, T3) is shown in Table 5-1.

Table 5-1 Common Tool Qualification Requirements

Common Tool Qualification Requirements T1 T2 T3

Compliance to Intended Usage.

The intended usage and the resulting tool
operational requirements (TOR) shall be
specified:

Evidence Evidence Evidence

- Usage

Application based TOR

- Operational Environment

- Safety Related System

- SW Application Needs/ SWSIL

- Tools´ Life Time/ Availability

SW Requirements/ Arch. based TOR

- SW Application Development Method/
Process Requirements (e.g. support of
design/ programming error detection, design
method)

- Standards Compliance (e.g. Compilers,
Design Tools)

Integrated Toolset based TOR

- Integrated Toolset Needs

- Integrated Toolset Cooperation
Requirements

…

The classification of the tool shall be justified.
Combined tools (development & verification) shall
be qualified like development tools (T3) unless
partitioning can be shown.

Justificati
on

Justificati
on

Justificati
on

The tool (as part of a set of techniques, methods
and tools) shall satisfy the tool operational
requirements as set by the software requirements
at the required SIL.

Requirements-based coverage to the TOR shall be
analyzed.

 Justificati
on

Justificati
on

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 52 of 79

Common Tool Qualification Requirements T1 T2 T3

The tool shall satisfy the tool operational
requirements as set by the needs of the application,
and of the safety related system.

Requirements-based coverage to the TOR shall be
analyzed.

Justificati
on

Justificati
on

Justificati
on

The availability of the tool over the whole lifetime of
the software shall be considered.

Justificati
on

Justificati
on

Justificati
on

Compliance to Integrated Toolset

The tool shall satisfy the tool operational
requirements as set by the needs of the integrated
toolset.

Justificati
on

Justificati
on

Justificati
on

The tool shall work co-operatively such that the
output from the tool shall have suitable content and
format for automatic input to a subsequent tool.

Justificati
on

Evidence Evidence

Correct Functionality

The tool shall have a specification or manual which
clearly defines the behavior of the tool and any
instructions or constraints on its use.

 Evidence Evidence

Evidence shall be available that the output of the
tool conforms to the specification of the output.
(Documentation of all analysis/ validation steps
shall be available)

 Evidence

- A suitable combination of history of
successful use in similar environments and
for similar applications

- or - Tool validation e.g. as a comparison of
the tool outputs to the output of the manual
process that is replaced by the tool.

- or - Compliance with the safety integrity
levels derived from the risk analysis of the
process and procedures including the tools.
(Tool developed to EN 50128)

Fault Handling

Potential failures which can be injected into the
tools output (due to e.g. systematic tool faults,
random tool faults because of abnormal operating
conditions,…) shall be identified.

 Evidence Evidence

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 53 of 79

Common Tool Qualification Requirements T1 T2 T3

There shall be measures that avoid or handle such
potential failures, e.g.:

- Measures within the executable safety
related software.

- and/or - Other appropriate methods for
avoiding or handling failures introduced by
tools (e.g. manual check, diverse tool chains,
…).

 Evidence Evidence

If there is no evidence for correct functionality
available, there shall be effective measures to
control failures of the executable safety related
software which result from faults that are
attributable to the tool, e.g.

- Diverse redundant code which allows the
detection and control of failures resulting in
faults introduced by a tool.

 Evidence

Configuration Management

Configuration management shall ensure that the
tool used

- is of a justified version

- and - is compatible to the versions of the rest
of the toolset

 Evidence Evidence

Maintenance

Justification for a new version of a tool may rely on
evidence provided by an earlier version if sufficient
evidence is provided that:

- the functional differences (if any) will not
affect tool compatibility with the rest of the
toolset,

- and - the new version is unlikely to contain
significant new, unknown faults.

 Evidence Evidence

Identified Shortcomings

Any additional measures which address any
identified shortcomings shall be justified and
evaluated.

 Evidence

5.2.3 Tool Usage Requirements

All standards require some user documentation. Only ED-215 (DO-330) formally identifies a
set of objectives with related activities and tool qualification data to be satisfied by each tool
user.

Regarding the user skills, EN 50128, ISO 26262 and EN 61508 [20] put requirements on
skills of software team members, including for tool users.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 54 of 79

The summarized conclusion is to apply the latest standard of ED-215 (DO-330), with
respects to the required personal skills stated by EN 50128 / EN 61508, on the development
of the distributed simulation and validation framework.

5.3 Research gap for state-of-the-art

The Safe4RAIL project is dedicated to the railway domain. Hence, the proposed simulation
and validation framework will be used in the railway domain safety application validation
processes. For this, it requires the fulfillment of the EN 50128 requirements regarding tool
qualification.

As explained in chapter 5.2, the analysis of the different standards regarding tool qualification
presents the conclusion that nowadays the standard ED-215 (DO-330) is more advanced
than EN 50128 in certain aspects of the tool qualification process. ED-215 (DO-330) was
developed from ED-12 (DO-178), Software Considerations in Airborne Systems and
Equipment Certification. However, this standard was developed as a new domain-
independent document, with the idea of being able to apply in domains different than
avionics. Hence, it will be possible to apply DO-330 / ED-215 thanks to its domain-
independent nature.

Safe4RAIL will analyze tool qualification requirements given by EN 50128 and DO-330 / ED-
215. The project will elaborate a concept and requirements for the tool qualification of the
proposed simulation and validation framework. During the development of the framework, the
suitability of the concept and the satisfiability of the tool qualification requirements will be
evaluated. Tool qualification solutions related to detected problems will be analyzed for
general applicability. A full tool qualification will not be performed during the Safe4RAIL
project. However, the evaluation results will be used create to a consolidated set of tool
qualification requirements and a tool qualification plan.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 55 of 79

Chapter 6 Test operation and test automation

6.1 Design goals for test operation and test automation

The specific requirements shall not be repeated here and can be read at ASAM - Association
for Standardisation of Automation and Measuring Systems [33]. The following section cover
requirements for the connection of the test automation (see Section 6.1.1), those solved by
the test tool (see Section 6.1.2) and execution steps for test automation (see Section 6.1.3).

6.1.1 Design goals for the connection of the test automation

As an overview, the design goals for the connection of the test automation to the system
under test can be denoted as follows.

Communication of simulation components

Must be separated into the model of computation as well as the simulation architecture
description and implementation.

Model of computation

The HILSF must allow all relevant models of computation required for the test use to be
executed. In case of a distributed simulation, the HILSF must ensure the same model of
computation as well as the simulation’s remote instantiation.

Simulation architecture description and implementation

The HILSF must provide a modeling language for describing of the simulation architecture
and the simulation hardware executing the models.

Simulation control

The HILSF must allow exact setting and supervision of the following properties of each
simulation members. Those properties are the local simulation time, the liveliness of the
execution and the status of the simulation instantiation steps.

Simulation operation

In addition to the above-mentioned requirements, the test automation driving the simulation
must implement a test automation and virtualization interface as well as signal injection and
measurement mechanisms.

6.1.2 Design goals solved by the test tool framework

Beyond the requirements described in Section 6.1.1 on the HILSF, the industrial success of
any such solution will depend on more requirements solved by the test tool framework
around the simulation at its core. Therefore, these requirements shall be mentioned here but
are beyond the focus of Safe4RAIL project.

Modelling and model management

Models representing the controller are easily mastered, but the availability of a plant model
with correct behavior and appropriate simulation performance is a constant challenge.
Moreover, the re-use of plant models is crucial for reasons of cost and quality. The delivery
chain of models to the SIL / HIL user is a core competence and not standardized, but equally
complex as the integration planning of the final vehicle.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 56 of 79

Mastering Simulation

A simulation is an abstraction. Judging the validity of a simulation w.r.t. the test executed
using the model is crucial for acceptance of the simulation result. It requires tools and
methods which are not part of the HILSF standardization.

Test script automation (following Evoke Technologies [98])

The test script automation handles scripts and data separately. It creates libraries while
following coding standards and offers high extensibility. Furthermore, it provides less
maintenance and script/framework version control.

6.1.3 Execution steps for test automation

Testing comprises as multitude of actions, implemented as functions integrated into a test
framework. Only a subset of these functions is inseparately related to test operation and
automation. The steps to the execution of an automatic test and required to be supported by
the HILSF shall be explained in the following.

Configure

This step models the configuration of the simulation. It contains connections of the sub-
models, the model of calculation for the integrated system, the timing of the models and their
connections and the allocation to simulation nodes.

Build

The communication according to the configuration is implemented. This can be an integral
part of the next step “instantiate” in case of configuring an exisiting simulation communication
backplane or it can be a separate step in case of the calibration.

Calibration

The parameters of each simulation must be calibrated at build time or at the init phase of the
first simulation execution. In railway systems, calibration is included at build time due to legal
reason.

Instantiate

The HILSF must provide an API to be called for instantiation of all parts of a simulation.

Execute, stimulate, record and supervise

The HILSF must provide the function of starting all simulation. Moreover, it must provide
APIs to (i) allow sending stimulus signals from the test automation to each simulation, (ii)
allow sending signals from each simulation to the test automation and (iii) for assessing the
liveliness of each simulation.

Close

The HILSF must provide an API for reversing the instantiation of the simulations.

Analysis and assessment

Includes the comparison of the recorded behavior with the expected behavior.

Report

Generates a report on the results.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 57 of 79

6.2 State-of-the-art of test operation and test automation

The state-of-the-art is represented by COTS tools successfully implementing all
requirements of the preceding chapter, some of them mentioned in Figure 6.1. The
challenges in test operation and automation follow the today’s challenges for system
development. Some important issues are denoted in the following.

Figure 6.1 Desired interoperability of test automation tools and test execution platforms
[from 82]

Distributed development

As already described above, the exchange or connection of simulations into one system
simulation is a challenge. For the testing, this entails the integration or the exchange of test
sequences among companies. This is addressed by defining universal or domain specific
standards for test languages, e.g. [89].

Distributed function

The implementation of functions in a distributed manner across different controllers imposes
difficulties in accessing and assessing the remote behavior. In a laboratory, this can be
achieved by using distributed test frameworks as HILSF. In the real implementation, the need
for such tests occurs typically after commissioning or maintenance. Hence, testing functions
are implemented in the series software. An efficient tool chain for transforming the desired
test sequences from test lab to series software is a challenge under development in the
automotive industry.

Model based development

Model based development exists for nearly every test language. It is not standardized and as
varying as available modeling tools for system development. In terms of such complex,
distributed test environments as Safe4RAIL is intending to create, a usable model based test
framework configuration and operation is desirable. However, it is not yet state-of-the-art of
any market-available tool.

Top down development and test specification vs. refactoring

In established industries like automotive or railway, most systems are not built from scratch
but based on legacy components. For them, the necessary abstract models for a model
based test specification do not exist. As refactoring is a major challenge for the system
development the efficient extraction of the models for test specification is the corresponding,
unsolved challenge for the test engineer.

6.3 Research gaps for state-of-the-art

At present, there is no major research gap in terms of test automation in the aspect of
executing a system under test and with the focus of Safe4RAIL as shown in chapter 6.1.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 58 of 79

However, successful test operation is also limited by matching the models with the test use
cases.

Test automation is not easily achieved and not always the best choice, c.f. [38] chapter „Test
Automation“. Due to the associated cost, it has to be wisely chosen.

Moreover, test automation has feedback effects on the plant models required for the
simulation. Test automation typically follows known paths of stimuli. Therefore, the plant
models need to represent valid behavior only in the spectrum of these stimuli. On the other
hand, manual test execution requires much smaller investments in terms of test operation –
but the test sequences are not known upfront. Therefore, the plant models must be
universally applicable in the whole range of allowed user interaction during the test. This is a
very high requirement and leads to extensive model verification cost.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 59 of 79

Chapter 7 Evaluation of extra-functional

properties

7.1 Design goals for evaluation of extra-functional properties

In this section, design goals for the evaluation of extra-functional properties are described.
Examples for such properties are the behavior in case of faults or the timing of the
simulation. To evaluate them, simulation based fault-injection will be used.

Simulation based fault-injection

As the validation framework is designed for distributed co-simulation, software and hardware
implemented fault-injection will not be used. However, simulation based fault-injection can be
integrated into the co-simulation framework and utilized during the simulations.

Interface and commands for fault-injection

To inject faults in the framework, an interface must be provided. Depending on the use-case,
defined injection commands control the fault-injection.

Controllability of fault-injection (Determinism and reproducibility)

Controllable fault-injection has the same advantages like deterministic and reproducible co-
simulation. The test cases can be repeated with the same system behavior.

Interface to monitor the system behavior

The goal of fault-injection is to analyze the system behavior in different fault-cases. To collect
the required data, a monitoring interface in the framework is required.

Usage of results for analysis

Data collected by the monitoring interface shall be usable for analysis and provided in a
defined format. For example, the mean times to and between failures (MTTF/MTBF) can be
analyzed, respectively.

Support for different injection techniques

Nowadays, there are multiple injection techniques such as saboteurs, mutants or command-
based techniques. The validation framework shall provide several of those techniques.

Catalog for different failure modes, failure types, etc.

A catalog shall be created listing all the failure modes, failure types, etc. supported by the
validation framework. The user can decide which faults to inject based on this catalog.

Automated test-case generation

Due to the diversity of the different failure types and failure modes and the necessity to run
multiple simulations, manual test case generation is time-consuming and costly. Hence, the
generation process shall be automated.

Efficiency and performance

Since there are many simulation runs required to collect sufficient data for analysis, the fault-
injection must be efficient and performant in the execution.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 60 of 79

7.2 Introduction to fault-injection

Safety-critical environments often have ultrahigh-reliability requirements. Since the hardware
reliability of VLSI (Very Large Scale Integration) components cannot reach ultrahigh
reliability, fault-tolerance mechanisms become necessary (see [56], ch.11.4.1). Those
mechanisms detect errors, locate their cause and recover into a non-faulty state. [80]

Although a major part of today’s systems already contains fault-tolerance mechanisms, those
mechanisms are not tested during quality assurance. Often, there is a lack of time or missing
software tools and techniques such that only the regular functionality is in the scope of the
final acceptance tests. As a result, the majority of causes for failing commissioning goes
back to issues in the control software. [57]

Validating a dependable computer system should provide (i) a measure of the system’s
ability to detect errors, locate them and recover, (ii) a measure of the tolerance mechanisms’
effectiveness, (iii) feedback to the engineer at the development stage for improvements and
(iv) confidence in the system at design-time. An effective approach to evaluate the system’s
dependability properties and its fault-tolerance mechanisms is fault-injection [80]. The
following sections will present different types of fault-injection techniques and tools
implementing them.

7.3 Timing and reliability evaluation by fault-injection

Regarding different types of faults, it is useful to analyze different kinds of fault-injection
techniques [74]. Those techniques can be categorized in three types according to the
injection targets: (i) hardware implemented fault-injection (HWIFI), (ii) software implemented
fault-injection (SWIFI) and (iii) simulation based fault-injection (SBFI). In the following, a brief
overview about the various techniques is given.

7.3.1 Hardware implemented fault-injection

HWIFI uses additional hardware to inject faults. There are two injection types depending on
the faults and their location, the injection with and without contact. While the first type has
direct physical contact to the target system, the second one produces physical phenomena
like radiation.

Both types induce voltage or current in the system to cause faults in it. Altering electric
currents with contact is applicable using either active probes attached to pins or sockets.
Indeed, active probes may destroy the device due to an inappropriate amount of current.
Sockets are placed between the target hardware and its circuit board. They can invert pin
signals or apply boolean operators like AND or OR on the signals.

Emulating physical phenomena does not need direct contact if radiation or electromagnetic
interference is used. However, these techniques are not precisely controllable which is why it
is difficult to exactly trigger the injection’s time and its location. [44]

7.3.2 Software implemented fault-injection

Injecting faults in the target system enables the analysis of the system behavior in a large
number of cases. The injection can cover all types of faults and failures in the system
occurring at run-time systematically. Using SWIFI is scalable and its results are statistically
verifiable. [91]

In contrast to HWIFI, SWIFI does not require expensive hardware and is applicable for target
applications and operating systems (OS). In case of a target application, a fault-injection
layer is added between the application and the OS. Adding a layer between the OS and the
hardware is difficult to achieve. Hence, the fault injector must be embedded in the OS if it is
the injection target. [44]

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 61 of 79

SWIFI is a flexible injection type but has some disadvantages. First, it cannot inject faults to
locations inaccessible by software. Furthermore, the workload running on the target system
may be disturbed and the structure of the original software might be changed. That is why
software injection must be designed carefully. At last, the approach has a limited time
resolution which may cause fidelity problems. While long latency faults (in memory, e.g) are
not affected, faults with a short latency (in the CPU, e.g) might not be captured. One solution
to this problem is a hybrid approach which combines software injection with hardware
monitoring. [44]

Methods for SWIFI can be categorized in compile-time and run-time injection. The first
technique changes the program instruction at design-time to generate an erroneous software
image. When the system executes, the fault is activated. It is simple as it does not require
additional software, but it does not allow injection at run-time. [44]

The injection at run-time requires a mechanism to trigger the injection. Such mechanisms
can be a time-out, an exception/trap or a code insertion. To use the time-out, a software or a
hardware timer is connected to the system’s interrupt handler. As soon as the timer expires,
an interrupt is invoked. This technique is easy to implement, but it is non-deterministic as the
injection does not arise based on a specific event or system state. Compared with this
approach, the exception/trap injects the fault whenever certain events or conditions occur.
Similar to the time-out, control is passed to the interrupt handler. In the code insertion
technique, instructions for fault-injection are added to the target program. Those allow the
injection before a particular instruction. Furthermore, they can be executed in user-mode
rather than the system mode which is required for a trap. [44]

7.3.3 Simulation based fault-injection

SBFI is useful to evaluate the effectiveness of fault-tolerant mechanisms and the system’s
dependability since it provides feedback to the developer. Indeed, the accurate inputs the
mechanism requires are difficult to supply. One reason is that past measurements often
cannot be used anymore when technology changes. However, precise results are provided
by testing a prototype without any assumptions about the system design. [44]

The technique has been widely used, as it is simple, versatile and controllable [74].
Additionally, the fault-behavior as well as the fault-propagation is highly observable [92].
SBFI can be divided into three types. Those are the simulator command technique, the
simulation model modification technique and the simulator modification injection. [74]

Injecting faults in the simulator command technique is done by built-in commands of the
simulator. The faults manipulate the values of signals or variables in the target simulation
model. It is a simple mechanism as does not require modifications in the simulation model.
Indeed, it has limits in representing various fault-models. Additionally, performing the
enormous number of fault-injection simulations to obtain acceptable results is inconvenient.
[74]

Regarding simulation model modification, the saboteur and the mutant techniques are most
widely adopted. Saboteurs are separate modules which inject various types of faults in the
target and control the simulation [74]. They are capable of altering values as well as the
system’s timing characteristics. During normal execution, saboteurs remain idle while they
are active in the fault-injection [92]. To inject faults, the saboteur contains an interface which
is connected to the inputs and outputs of the target system. Hence, it requires modifications
in the original target by adding a large number of control signals. This increases the
complexity but there are more fault-models implementable than in the simulator command
technique. Mutants are modified or corrupted modules representing the fault-injection. They
are used to replace the original target and support various types of fault-models. Certainly,
each mutant representing an error has to be prepared in advance which requires a large
amount of storage area if many mutants need to be created. Typically, this is the case in any
non-trivial fault-injection experiment.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 62 of 79

Modifying the simulation kernel is used in the third technique. One advantage is that it must
not change the original semantics of the target if an event-driven simulation engine is used.
Hence, the experiments are simpler and more convenient than those in the simulation
modification technique. Additionally, it requires less simulation resources because it can
easily perform deterministic and random fault-injections. For faster reliability analysis by
parallel execution, a distributed system can be used. [92]

7.3.4 Fault-injection tools

Since fault-injection is an efficient way to evaluate the system behavior in fault-cases, there
are many tools available using the above-mentioned techniques or combinations of them. In
this section, a portion of these tools is presented.

The Messaline tool [6] uses active probes and sockets to conduct pin-level fault-injection.
Among others, the tool can inject stuck-at, open, bridging and complex logic faults and can
control the length of fault-existence as well as its frequency. Additionally, collecting signals
from the target system provides feedback to the user. The tool was used in experiments in a
railway control system and in a distributed system.

FIST (Fault-injection System for Study of Transient Fault Effect) [37] creates transient faults
inside a target system utilizing both contact and contactless techniques. It is capable of
injecting faults directly inside a chip which is impossible using pin-level injection.

A different approach for contactless fault-injection is followed by MARS (Maintainable Real-
Time System) [53] which is a distributed, fault-tolerant real-time architecture. In it, a circuit
board is placed between two charged plates and antennas accentuate the electromagnetic
field effects on individual chips.

One example for SWIFI is the Ferrari tool (Fault and Error Automatic Real-Time Injection)
[52] which applies traps and trap handling. Traps are triggered by the program counter or a
timer and the trap handling routines inject the faults as a consequence by e.g. manipulating
registers or memory. Those faults can be of transient or permanent character.

Using Ftape (Fault Tolerance and Performance Evaluator) [100], engineers can likewise
inject faults into registers and the memory. However, the tool emulates I/O-errors or bit-flips
by related drivers in the operating system.

Doctor (Integrated Software Fault-injection Environment) [40] allows fault-injection for CPU,
memory and the communication interface using three different ways. Those are time-outs,
traps and code modification. Using the tool, the effect of intermediate message losses in
distributed real-time systems can be analyzed.

Many modern processors have features for debugging and monitoring which are utilizable to
inject more realistic faults. Those features are exploited in Xception [18] without any
modification in the software. The fault injector acts like an exception handler and reacts to
interrupts. Each interrupt is triggered by the processor based on a defined address. Hence,
the experiments are reproducible.

Schlingloff and Vulinovic [91] introduce a model driven approach to evaluate the reliability of
embedded controllers. Their tool allows the injection of faults on different modeling levels like
the functional and the implementation model. Additionally, it supports various injection
techniques like saboteurs or mutants.

VERIFY [92] is a software-based fault-injector which extends the VHDL language by fault-
injection signals. In this way, the signals act as an interface for the simulator to enable the
faults and each fault can be associated to a component. The tool supports dependability
evaluation in all hardware design phases. Hence it is possible to analyze the rates of system
crashes and recoveries on the one hand and the recovery time distribution which is related to
the location or the type of the injected fault on the other one.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 63 of 79

In the automotive and industrial automation domains, the approach of EffektiV [83] proves
safety using virtual prototypes. Existing simulation environments are extended by fault-
injection, monitoring and co-simulation mechanisms. Utilizing the tool in all design-stages
supports decisions during the entire design-progress and safety-mechanisms can be
evaluated. Additionally, the support of co-simulation possibilities enable the integration of
further models in the experiments.

Na and Lee [74] propose the Verilog-based simulated fault-injection (VFI) technique. While
mutants and saboteurs are inefficient and suffer from difficult experimental setups, VFI has
various advantages. It is unnecessary to modify the design model and the simulation
procedure is simple and efficient. Furthermore, this technique supports various types of
faults. Building a VFI environment using the ICARUS Verilog simulator enables the
evaluation of the approach’s effectiveness. The simulation results prove the reliability of the
target system as well as the effectiveness of the fault-tolerance mechanisms.

GOOFI (Generic Object-Oriented Fault-injection Tool) [4] is a generic tool supporting
different target systems and fault-injection techniques. Since it is implemented in Java and
relies on an SQL compatible database it is highly portable between different host platforms.
To develop a user-friendly environment, it provides a graphical user interface and a generic
architecture. The object-oriented approach further increases extensibility and maintainability
of the tool. Next to pre-runtime SWIFI which injects errors before the simulation start, GOOFI
supports Scan-Chain Implemented fault-injection. This technique exploits scan-chains
available in VLSI circuits to inject faults at pins and in internal state elements. Moreover, the
internal state can be observed.

Deterministic simulations are supported by FAUmachine presented in [88] which is a virtual
machine for the simulation of standard PC hardware in cooperation with an environment.
Since the tool uses just-in-time compilers, it provides good performance and can be used for
reproducible tests in a reasonable time. Furthermore, FAUmachine allows testing for real-
time constraints and provides the opportunity of multiple, automatically executed test-cases.
To reach these features, the tool requires a real-time clock and uses its own cooperative
light-weight thread-concept which ensures a predictable scheduling.

The framework presented in [16] is designed for in-depth analysis of transient faults and
based on a debug-like mechanism to support analysis from an application point of view. It
supports the designer to evaluate and to tune the system’s dependability-related properties.
The authors implement the framework in a fault-injection environment for SystemC and show
that it is portable to other environments.

Rohani and Kerkhoff [87] propose a technique to reduce the consumption of CPU time in
simulation-based fault-injection in complex System-on-Chip. It is compliant with commercial
HDL simulators hence it does not require dedicated compilers. Additionally, the top-level
modules do not have to be modified and a wide range of fault-models can be injected. The
reduction of CPU time is achieved by utilizing simulator-commands along with partial code
modification using saboteurs. During execution, the saboteurs are statically scheduled and
completely controlled by simulator commands. Experimental results show a reduction of 27%
to 67% in CPU time consumption compared to typical simulation-based fault-injection
approaches.

The authors of [39] introduce two approaches to overcome crucial problems of software-
based fault-injection techniques. While the first approach improves accuracy, the second one
supplies detailed insight into the system dynamics in case of a fault. The insight enables to
investigate the effect of faults and errors and fault-injection targets can be determined in time
and location. Using this knowledge, the approach can significantly reduce the number of
fault-injections since only the important cases are covered. Furthermore, both approaches
can be joined together to combine their advantages.

Since fault-injection experiments must cover many cases, an automated test-case generation
tool is desirable. Kormann and Vogel-Heuser [57] present such an approach to verify the

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 64 of 79

system’s behavior in the presence of faults. They focus on a reduced set only covering
meaningful, different test-cases. The complete set is generated automatically and is
optimized in relation to its quantity. Only if predetermined fault detection and handling criteria
are strictly met, a test case will be used. Additionally, test-cases traversing similar paths with
different inputs are clustered which outperforms many other existing approaches. Hence, the
approach scales depending on the desired degree of coverage.

7.4 Research gap for state-of-the-art

In this section, many different fault-injection tools are presented. Using those tools,
properties of the system like the timing behavior or the behavior in case of faults can be
observed. Furthermore, the simulation results enable to determine characteristics like the
mean-time-to-failure or the mean-time-between-failure.

Since one design goal for the evaluation of extra-functional properties is the usage of
simulation based fault-injection, many tools presented in the section are not applicable for
this framework. They are either used for software or for hardware implemented fault-
injection. However, the approaches presented in [72] and [74] both address efficiency and
performance while [72] and [91] provide automated test-case generation. Additionally, all
three tools are capable of injecting faults by using different injection techniques.

The presented fault-injection tools supporting simulation-based fault-injection have common
properties related to the requirements defined in section 7.1. Most of the tools provide the
required interfaces for both fault-injection and monitoring of the system’s behavior.
Furthermore, the injection is controllable in most cases to provide determinism and
reproducibility and the monitoring results are usable for analysis. However, only VERIFY [92]
and the approach presented in [87] address efficiency and performance while only [16]
supports automated test-case generation. The injection by different techniques is realized in
the different approaches presented in [83], [4] as well as [39]. A catalog with different failure
modes or failure types is contained in none of the references cited.

On these grounds, the research gap for the evaluation of extra-functional properties is
defined as follows. One fault-injection approach covering most of the requirements will be
selected. Its capabilities need to be extended by the techniques related to the remaining
requirements and afterwards the resulting mechanism is integrated into the evaluation and
validation framework. Furthermore, the catalog with different failure modes and failure types
has to be prepared.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 65 of 79

Chapter 8 Summary and conclusion

One crucial development step in the railway domain is the integration of railway components
and their testing. This process can be radically improved compared to today’s practice by
using a dedicated distributed simulation and validation framework. Therefore, one objective
of the ongoing European research project Safe4RAIL lies in the concept design and a proof-
of-concept implementation of such a framework. The goal is a network-centric simulation at
system level providing a time-accurate simulation of in-train communication networks with
co-simulated end-systems. Hence, simulators and physical systems shall be securely
coupled via public communication networks.

In this deliverable, a SotA analysis of distributed simulation frameworks and other solutions
of interest is presented. Such other solutions are Software- and Hardware-In-The-Loop
simulation frameworks or tools to simulate wireless railway networks among others. The
deliverable presents existing tools and defines the initial requirements for the design of the
framework. Based on those aspects, the research gaps related to the topics can be defined.

Using a distributed SIL and HIL simulation framework leads to the handling of disturbances.
In those cases, the communication can be delayed while the sensitivity for the simulation’s
quality depends on the disturbance itself. Furthermore, the simulation setup must be efficient
and performant to provide fast SIL execution while also enabling real-time behavior for HIL.

One use case for the application of the framework is the testing of MCGs in the T2G
communication. For this, a test environment will be developed in which the MCG provides
the interface for the TCMS to communicate with the ground. The related peer will be the
GCG. Both units will be integrated in the framework using HIL and SIL.

The combination of the HLA together with the FMI standard is a promising approach to
interconnect simulations and physical devices in a distributed co-simulation framework. While
FMI is already supported by various simulation tools, the HLA maintains the possibility to
interconnect and synchronize the tools. Further solutions cover the requirements related to
distributed co-simulation, timing, configuration and security of the framework.

Combining parts of the DO-330 / ED-215 standards with EN 50128 for the usage in the
railway domain is important to validate the safety of the application. Hence, the standards will
be probed and analyzed to report their applicability for the framework.

Since test automation is commonly used, hence there is no related research gap. However,
test automation is not easily achieved and has feedback effects on the plant models in the
simulation. The universal applicability of the plant models for user interaction during the tests
is a very high requirement and leads to extensive model verification cost.

At last, evaluating extra-functional properties such as the timing behavior or the behavior in
case of faults is another important aspect for the simulation and validation framework. To
fulfill all requirements, a combination of the different tools presented in Chapter 7 is required.
Finally, the developed mechanism needs to be integrated in the distributed co-simulation
framework.

To conclude, there are already various approaches and standards available which can be
utilized for the distributed simulation and validation framework. However, important
challenges such as providing real-time execution in a distributed framework over the Internet,
developing the T2G test environment or the safety validation still remain. In the following
months, the initial requirements and design goals defined in this document have to be refined
resulting in the final requirements for the project.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 66 of 79

Chapter 9 List of Abbreviations

Table 9-1 List of Abbreviations

3G Third generation of wireless mobile telecommunications
technology (In Europe mostly UMTS)

4G Fourth generation of wireless mobile
telecommunications technology (In Europe represented by LTE)

5G Fifth generation of wireless mobile telecommunications
technology - proposed next telecommunications standards
beyond the current 4G

A/D Analog/Digital

ADN Active Distribution Networks

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AIK Attestation Identity Key

AMS Alpha Magnetic Spectrometer

API Application Programming Interface

ASAM Association for Standardisation of Automation and Measuring
Systems

ATO Automatic train operation

BER Bit Error Rate

BSI Bundesamt für Sicherheit in der Informationstechnik

CA Certificate Authority

CACSD Computer-Aided Control System Design

CBC Cipher Block Chaining

CBTC Communications-Based Train Control

CCTV Closed Circuit Television

https://en.wikipedia.org/wiki/Wireless
https://en.wikipedia.org/wiki/Wireless
https://en.wikipedia.org/wiki/Mobile_telephony
https://en.wikipedia.org/wiki/Mobile_telephony
https://en.wikipedia.org/wiki/Wireless
https://en.wikipedia.org/wiki/4G

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 67 of 79

CMAC Cipher-based Message Authentication Code

COS Customer Oriented Service

COTS Commercial Off-The-Shelf

CPS Cyber-Physical System

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CS Co-Simulation

CVC Card Verifiable Certificate

D/A Digital/Analog

DER Distributed Energy Resources

DES Data Encryption Standard

DHIL Distributed Hardware-in-the-loop Simulation

DSA Digital Signature Algorithm

DSIL Distributed Software-in-the-loop Simulation

DSML Domain-Specific Modeling Language

DUT Device Under Test

ECC Elliptic Curve

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

ECN Ethernet Consist Network

ECRYPT European Network of Excellence for Cryptology

ED End Device

EdDSA Edwards-curve Digital Signature Algorithm

EK Endorsement Key

EPC Evolved Packet Core

ERTMS European Rail Traffic Management System

ETB Ethernet Train Backbone

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 68 of 79

ETCS European Train Control System

FER Frame Error Rate

FMI Functional Mockup Interface

FMU Functional Mockup Units

FOM Federation Object Model

FTP File Transfer Protocol

GCG Ground Communication Gateway as specified in IEC 61375-2-6

GME Generic Model Environment

GSM Global System for Mobile Communications

HIL Hardware-In-The-Loop

HILS HIL Simulation

HILSF HIL Simulation Framework

HLA High Level Architecture

HMAC Hash-based Message Authentication Code

HSM Hardware Security Module

HTTP Hyper Text Transfer Protocol

HWIFI Hardware Implemented Fault-Injection

I/O Input/Output

IaaS Infrastructure-as-a-Service (means enterprise IT infrastructure,
e.g. virtual servers)

ICMP Internet Control Message Protocol

IDE Integrated Development Environment

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IGMP Internet Group Management Protocol

IP Internet Protocol

ISO International Organization for Standardization

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 69 of 79

ISS International Space Station

KPI Key Performance Indicator

LLC Logical Link Control

LTE Long Term Evolution

MAC Message Authentication Code

MAC Media Access Control

MANET Mobile Ad Hoc Networks

MCG Mobile communication gateway as specified in IEC 61375-2-6

MD5 Message-Digest Algorithm 5

ME Model Exchange

MIL Model-In-The-Loop

MIMO Multiple-input Multiple-output

MPI Message Passing Interface

NIST National Institute of Standards and Technology

NSA National Security Agency

OEM Original Equipment Manufacturer – more specific in the scope of
this document: supplier of an equipment for railway vehicle
manufacturers

OMT Object Model Template

OMTS On-board Multimedia and Telematics System

ONVIF Open Network Video Interface Forum

OOS Operator Oriented Services

OS Operating System

OTA Over-the-air

PaaS Platform-as-a-Service

PDCs Phasor Data Concentrators

PHIL Power HIL

PIS Passenger Information Services

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 70 of 79

PK Public Key

PKC Public-Key Cryptography

PMUs Phase Measurement Units

PoE Power over Ethernet

PSS Probabilistic Signature Scheme

PUF Physical Unclonable Function

QoS Quality of Service

RSA Rivest-Shamir-Adleman

RT Real-Time

RTDS RT Digital Simulator

RTI Runtime Infrastructure

RTSs Real-Time Simulators

SBFI Simulation Based Fault-Injection

SE State Estimator

SHA Secure Hash Algorithm

SK Secret Key

SNMP Simple Network Management Protocol

SotA State-of-the-Art

SRAM Static Read Access Memory

SRK Storage Root Key

SSH Secure Shell

SUT System Under Test

SWIFI Software Implemented Fault-Injection

T2G Train-to-Ground

T2GTE Train-to-Ground Test Environment

TCMS Train Control and Monitoring System

TCN Train Communication Network

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 71 of 79

TCP Transmission Control Protocol

TD-LTE Time Division Long Term Evolution

TLS Transport Layer Security

TPM Trusted Platform Module

TRDP Train Real-Time Data Protocol

TTDP Train Topology Discovery Protocol

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunication System

VoIP Voice over Internet Protocol

WiFi Wireless Fidelity

WiMAX Worldwide Interoperability for Microwave Access

WNCS Wireless Networked Control Systems

XCBC eXtended Ciphertext Block Chaining

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 72 of 79

Chapter 10 Bibliography

[1] New dependable rolling stock for a more sustainable, intelligent and comfortable rail
transport in europe, d2.1 - specification of the wireless tcms. Technical report, Roll2Rail
Project (Horizon2020).

[2] Eb assist adtf, December 2016.

[3] Marina Aguado, Oscar Onandi, Purificacion Agustin, Marivi Higuero, and Eduardo
Taquet. Wimax on rails. IEEE Vehicular Technology Magazine, 3(3):47–56, 2008.

[4] Joakim Aidemark, Jonny Vinter, Peter Folkesson, and Johan Karlsson. Goofi:
Generic object-oriented fault injection tool. In Dependable Systems and Networks, 2001.
DSN 2001. International Conference on, pages 83–88. IEEE, 2001.

[5] Alexandre Amory, Fernando Moraes, Leandro Oliveira, Ney Calazans, and Fabiano
Hessel. A heterogeneous and distributed co-simulation environment [hardware/software]. In
Integrated Circuits and Systems Design, 2002. Proceedings. 15th Symposium on, pages
115–120. IEEE, 2002.

[6] Jean Arlat, Yves Crouzet, and J-C Laprie. Fault injection for dependability validation
of fault-tolerant computing systems. In Fault-Tolerant Computing, 1989. FTCS-19. Digest of
Papers., Nineteenth International Symposium on, pages 348–355. IEEE, 1989.

[7] M. Arnold, C. Clauß, and T. Schierz. Numerical aspects of fmi for model exchange
and co-simulation v2.0. Proc. of The 2nd Joint International Conference on Multibody System
Dynamics, Stuttgart, Germany, May 29 - June 1, 2012, 2012.

[8] Modelica Association. Fmi homepage. Website. Online available at https://fmi-
standard.org/; accessed on 30.11.2016.

[9] Modelica Association. Functional mock-up interface, October 2016.

[10] Muhammad Usman Awais, Peter Palensky, Atiyah Elsheikh, Edmund Widl, and
Stifter Matthias. The high level architecture rti as a master to the functional mock-up interface
components. In Computing, Networking and Communications (ICNC), 2013 International
Conference on, pages 315–320. IEEE, 2013.

[11] Muhammad Usman Awais, Peter Palensky, Wolfgang Mueller, Edmund Widl, and
Atiyah Elsheikh. Distributed hybrid simulation using the hla and the functional mock-up
interface. Industrial Electronics Society, IECON, pages 7564–7569, 2013.

[12] Silvio Baccari. Real-time hil in railway: Simulations for testing control software of
electromechanical train components. In Francesco Flammini, editor, Railway Safety,
Reliability and Security. IGI Global, 2012.

[13] D Bian, M Kuzlu, M Pipattanasomporn, S Rahman, and Y Wu. Real-time co-
simulation platform using opal-rt and opnet for analyzing smart grid performance. In 2015
IEEE Power & Energy Society General Meeting, pages 1–5. IEEE, 2015.

[14] Torsten Blochwitz, Martin Otter, Johan Akesson, Martin Arnold, Christoph Clauss,
Hilding Elmqvist, Markus Friedrich, Andreas Junghanns, Jakob Mauss, Dietmar Neumerkel,
et al. Functional mockup interface 2.0: The standard for tool independent exchange of
simulation models. In Proceedings of the 9th International MODELICA Conference;
September 3-5; 2012; Munich; Germany, number 076, pages 173–184. Linköping University
Electronic Press, 2012.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 73 of 79

[15] Torsten Blochwitz, Martin Otter, Martin Arnold, Constanze Bausch, H Elmqvist,
A Junghanns, J Mauß, M Monteiro, T Neidhold, D Neumerkel, et al. The functional mockup
interface for tool independent exchange of simulation models. In Proceedings of the 8th
International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden;
Germany, number 063, pages 105–114. Linköping University Electronic Press, 2011.

[16] Cristiana Bolchini and Antonio Miele. An application-level dependability analysis
framework for embedded systems. In 2011 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems, pages 171–178. IEEE, 2011.

[17] David Broman, Christopher Brooks, Lev Greenberg, Edward A Lee, Michael Masin,
Stavros Tripakis, and Michael Wetter. Determinate composition of fmus for co-simulation. In
Proceedings of the Eleventh ACM International Conference on Embedded Software, page 2.
IEEE Press, 2013.

[18] Joao Carreira, Henrique Madeira, João Gabriel Silva, et al. Xception: Software fault
injection and monitoring in processor functional units. Dependable Computing and Fault
Tolerant Systems, 10:245–266, 1998.

[19] Jon Casasempere, Pedro Sanchez, Tomas Villameriel, and Javier Del Ser.
Performance evaluation of h. 264/mpeg-4 scalable video coding over ieee 802.16 e
networks. In 2009 IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting, pages 1–6. IEEE, 2009.

[20] CENELEC. Functional safety of electrical/electronic/programmable electronic safety-
related systems, 2010.

[21] CENELEC. Railway applications - communication, signalling and processing systems
- software for railway control and protection systems, 2011.

[22] Michael Charitos and Grigorios Kalivas. Wimax-wlan vehicle-to-infrastructure network
architecture during fast handover process. In Advanced Information Networking and
Applications Workshops (WAINA), 2013 27th International Conference on, pages 431–436.
IEEE, 2013.

[23] Selim Ciraci, Jeff Daily, Jason Fuller, Andrew Fisher, Laurentiu Marinovici, and
Khushbu Agarwal. Fncs: A framework for power system and communication networks co-
simulation. In Proceedings of the Symposium on Theory of Modeling & Simulation-DEVS
Integrative, page 36. Society for Computer Simulation International, 2014.

[24] ACOSAR Consoritum. Literature review in the fields of standards , projects, industry
and science. d1.1, 2016.

[25] Fabio Cremona, Marten Lohstroh, Stavros Tripakis, Christopher Brooks, and
Edward A Lee. Fide: an fmi integrated development environment. In Proceedings of the 31st
Annual ACM Symposium on Applied Computing, pages 1759–1766. ACM, 2016.

[26] Judith S Dahmann, Richard M Fujimoto, and Richard M Weatherly. The dod high
level architecture: an update. In Simulation Conference Proceedings, 1998. Winter,
volume 1, pages 797–804. IEEE, 1998.

[27] Atiyah Elsheikh, Muhammed Usman Awais, Edmund Widl, and Peter Palensky.
Modelica-enabled rapid prototyping of cyber-physical energy systems via the functional
mockup interface. In Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), 2013 Workshop on, pages 1–6. IEEE, 2013.

[28] Tulga Ersal, Mark Brudnak, Jeffrey L Stein, and Hosam K Fathy. Statistical
transparency analysis in internet-distributed hardware-in-the-loop simulation. IEEE/ASME
transactions on mechatronics, 17(2):228–238, 2012.

[29] EUROCAE. Software considerations in airborne systems and equipment certification,
2012.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 74 of 79

[30] EUROCAE. Software tool qualification considerations, 2012.

[31] Imade Fahd Eddine Fatani, Yann Cocheril, Crépin Nsiala, Baptiste Vrigneau, Marion
Berbineau, and François-Xavier Coudoux. Robust train-to-wayside video communications in
tunnels using h. 264 error-resilient video encoding combined with multiple antenna systems.
Transportation Research Part C: Emerging Technologies, 25:168–180, 2012.

[32] J. Fitzgerald, P.G. Larsen, and M. Verhoef. Collaborative Design for Embedded
Systems: Co-modelling and Co-simulation. SpringerLink : Bücher. Springer Berlin
Heidelberg, 2014.

[33] ASAM Association for Standardisation of Automation ans Measuring Systems. Asam
xil, September 2014.

[34] Alfredo Garro and Alberto Falcone. On the integration of hla and fmi for supporting
interoperability and reusability in distributed simulation. In Proceedings of the Symposium on
Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, pages 9–16. Society
for Computer Simulation International, 2015.

[35] QA Systems GmbH. Cantata - accelerate safety standards compliance for c & c++
with cantata automated unit & integration test, 2015.

[36] Ke Guan, Zhangdui Zhong, Bo Ai, Ruisi He, Binghao Chen, Yuanxuan Li, and Cesar
Briso-Rodriguez. Complete propagation model in tunnels. IEEE Antennas and Wireless
Propagation Letters, 12:741–744, 2013.

[37] Ulf Gunneflo, Johan Karlsson, and Jan Torin. Evaluation of error detection schemes
using fault injection by heavy-ion radiation. In Fault-Tolerant Computing, 1989. FTCS-19.
Digest of Papers., Nineteenth International Symposium on, pages 340–347. IEEE, 1989.

[38] Rajeev Gupta. Test Automation and QTP: QTP 9.2, QTP 9.5, QTP 10.0 and
Functional Test 11.0. Pearson Education India, 2012.

[39] Jens Guthoff and Volkmar Sieh. Combining software-implemented and simulation-
based fault injection into a single fault injection method. In Fault-Tolerant Computing, 1995.
FTCS-25. Digest of Papers., Twenty-Fifth International Symposium on, pages 196–206.
IEEE, 1995.

[40] Seungjae Han, Kang G Shin, and Harold A Rosenberg. Doctor: An integrated
software fault injection environment for distributed real-time systems. In Computer
Performance and Dependability Symposium, 1995. Proceedings., International, pages 204–
213. IEEE, 1995.

[41] C Harding, A Griffiths, and Hongnian Yu. An interface between matlab and opnet to
allow simulation of wncs with manets. In 2007 IEEE International Conference on Networking,
Sensing and Control, pages 711–716. IEEE, 2007.

[42] Graham Hemingway, Himanshu Neema, Harmon Nine, Janos Sztipanovits, and
Gabor Karsai. Rapid synthesis of high-level architecture-based heterogeneous simulation: a
model-based integration approach. Simulation, page 0037549711401950, 2011.

[43] Kenneth Hopkinson, Xiaoru Wang, Renan Giovanini, James Thorp, Kenneth Birman,
and Denis Coury. Epochs: a platform for agent-based electric power and communication
simulation built from commercial off-the-shelf components. IEEE Transactions on Power
Systems, 21(2):548–558, 2006.

[44] Mei-Chen Hsueh, Timothy K Tsai, and Ravishankar K Iyer. Fault injection techniques
and tools. Computer, 30(4):75–82, 1997.

[45] Francisco Huerta, Jorn K Gruber, Milan Prodanovic, and Pablo Matatagui. Power-
hardware-in-the-loop test beds: evaluation tools for grid integration of distributed energy
resources. IEEE Industry Applications Magazine, 22(2):18–26, 2016.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 75 of 79

[46] Vector Software Inc. Whitepaper: Vectorcast: Softwareverifikation, prüfung und
validierung von anwendungen im bahnverkehr., 2016.

[47] International Standardization Organization. ISO 26262: Road Vehicles - Functional
Safety (part 1-10), 2011.

[48] (Federal Aviation Administration) Frédéric POTHON (ACG Solutions) Gérard LADIER
(Aerospace Valley) Jean-Louis BOULANGER (CERTIFER) Jean-Paul BLANQUART
(Astrium) Philippe QUERE (Renault) Bertrand RICQUE (Sagem Défense Sécurité) Jean
GASSINO (Institut de Radioprotection et de Sûreté Nucléaire) Jean-Louis CAMUS
(Esterel Technologies), Michael P DEWALT. Tool qualification in multiple domains: Status
and perspectives, erts2 2014 contributive paper. http://acg-solutions.fr/acg/wp-content/-
uploads/2014/09/ERTS2014_MultiStandardToolQualification_1.0.pdf licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License., 2014.

[49] Hailin Jiang, Victor CM Leung, Chunhai Gao, and Tao Tang. Mimo-assisted handoff
scheme for communication-based train control systems. IEEE Transactions on Vehicular
Technology, 64(4):1578–1590, 2015.

[50] Dr. Lawrence Augustin Jürgen Döring. Introduction into asam mcd, September 1999.

[51] Ali Kalakech, Marion Berbineau, Iyad Dayoub, and Eric Pierre Simon. Time-domain
lmmse channel estimator based on sliding window for ofdm systems in high-mobility
situations. IEEE Transactions on Vehicular Technology, 64(12):5728–5740, 2015.

[52] Ghani A Kanawati, Nasser A Kanawati, and Jacob A Abraham. Ferrari: A tool for the
validation of system dependability properties. In Fault-Tolerant Computing, 1992. FTCS-22.
Digest of Papers., Twenty-Second International Symposium on, pages 336–344. IEEE, 1992.

[53] Johan Karlsson, Peter Folkesson, Jean Arlat, Yves Crouzet, Günther Leber, and
Johannes Reisinger. Application of three physical fault injection techniques to the
experimental assessment of the mars architecture. Dependable Computing and Fault
Tolerant Systems, 10:267–288, 1998.

[54] Brian M Kelley, Philip Top, Steven G Smith, Carol S Woodward, and Liang Min. A
federated simulation toolkit for electric power grid and communication network co-simulation.
In Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), 2015 Workshop
on, pages 1–6. IEEE, 2015.

[55] Arwa Khayat, Mohamed Kassab, Marion Berbineau, Mohamed Amine Abid, and
Abdelfettah Belghith. Lte based communication system for urban guided-transport: A qos
performance study. In International Workshop on Communication Technologies for Vehicles,
pages 197–210. Springer, 2013.

[56] Hermann Kopetz. Real-Time Systems - Design Principles for Distributed Embedded
Applications. Real-Time Systems Series. Springer Science & Business Media, Berlin
Heidelberg, 2. aufl. edition, 2011.

[57] Benjamin Kormann and Birgit Vogel-Heuser. Automated test case generation
approach for plc control software exception handling using fault injection. In IECON 2011-
37th Annual Conference on IEEE Industrial Electronics Society, pages 365–372. IEEE, 2011.

[58] Renuka M Kulkarni, Rohita P Patil, and Chidambar Rao Bhukya. Hardware–in–loop
test bench based failure mode effects test automation. technology, 4(6), 2016.

[59] Jean-Marc Kwadjane, Baptiste Vrigneau, Charlotte Langlais, Yann Cocheril, and
Marion Berbineau. Performance evaluation of max-dmin precoding in impulsive noise for
train-to-wayside communications in subway tunnels. EURASIP journal on wireless
communications and networking, 2014(1):1–12, 2014.

[60] Wook Hyun Kwon and Seong-Gyu Choi. Real-time distributed software-in-the-loop
simulation for distributed control systems. In Computer Aided Control System Design, 1999.
Proceedings of the 1999 IEEE International Symposium on, pages 115–119. IEEE, 1999.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 76 of 79

[61] Loi Lei Lai, Chong Shum, Linyu Wang, WH Lau, Norman Tse, Henry Chung,
KF Tsang, and Fangyan Xu. Design a co-simulation platform for power system and
communication network. In 2014 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 3036–3041. IEEE, 2014.

[62] David M Lane, Gavin J Falconer, Geoph Randall, and Ian Edwards. Interoperability
and synchronisation of distributed hardware-in-the-loop simulation for underwater robot
development: issues and experiments. In Robotics and Automation, 2001. Proceedings 2001
ICRA. IEEE International Conference on, volume 1, pages 909–914. IEEE, 2001.

[63] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems - A Cyber-
Physical Systems Approach. Lee and Seshia, 1 edition, 2010.

[64] W Li, A Monti, M Luo, and Roger A Dougal. Vpnet: A co-simulation framework for
analyzing communication channel effects on power systems. In 2011 IEEE Electric Ship
Technologies Symposium, pages 143–149. IEEE, 2011.

[65] Hua Lin, Santhosh S Veda, Sandeep S Shukla, Lamine Mili, and James Thorp. Geco:
Global event-driven co-simulation framework for interconnected power system and
communication network. IEEE Transactions on Smart Grid, 3(3):1444–1456, 2012.

[66] Y Liu, M Steurer, and P Ribeiro. A novel approach to power quality assessment: real
time hardware-in-the-loop test bed. IEEE transactions on power delivery, 20(2):1200–1201,
2005.

[67] Igor Lopez, Marina Aguado, and Christian Pinedo. A step up in european rail traffic
management systems: A seamless fail recovery scheme. IEEE Vehicular Technology
Magazine, 11(2):52–59, 2016.

[68] Bin Lu, Xin Wu, Hernan Figueroa, and Antonello Monti. A low-cost real-time
hardware-in-the-loop testing approach of power electronics controls. IEEE Transactions on
Industrial Electronics, 54(2):919–931, 2007.

[69] M Luglio, C Roseti, G Savone, and F Zampognaro. Tcp performance on a railway
satellite channel. In Satellite and Space Communications, 2009. IWSSC 2009. International
Workshop on, pages 434–438. IEEE, 2009.

[70] É. Masson and M. Berbineau. Wireless Communications for Railway Applications.
2017.

[71] Juan-Carlos Maureira, Paula Uribe, Olivier Dalle, Takeshi Asahi, and Jorge Amaya.
Component based approach using omnet++ for train communication modeling. In Intelligent
Transport Systems Telecommunications,(ITST), 2009 9th International Conference on,
pages 441–446. IEEE, 2009.

[72] Silvio Misera, Heinrich Theodor Vierhaus, and Andre Sieber. Fault injection
techniques and their accelerated simulation in systemc. In Digital System Design
Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference on, pages
587–595. IEEE, 2007.

[73] Wolfgang Muller and Edmund Widl. Using fmi components in discrete event systems.
In Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), 2015 Workshop
on, pages 1–6. IEEE, 2015.

[74] Jongwhoa Na and Dongwoo Lee. Simulated fault injection using simulator
modification technique. ETRI Journal, 33(1):50–59, 2011.

[75] Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos Sztipanovits, Gabor Karsai,
Sandeep Neema, Ted Bapty, John Batteh, Hubertus Tummescheit, and Chandraseka
Sureshkumar. Model-based integration platform for fmi co-simulation and heterogeneous
simulations of cyber-physical systems. In Proceedings of the 10 th International Modelica
Conference; March 10-12; 2014; Lund; Sweden, number 096, pages 235–245. Linköping
University Electronic Press, 2014.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 77 of 79

[76] Khanh TP Nguyen, Julie Beugin, Marion Berbineau, and Mohamed Kassab. A new
analytical approach to evaluate the critical-event probability due to wireless communication
errors in train control systems. IEEE Transactions on Intelligent Transportation Systems,
2016.

[77] Rafidah Md Noor and Christopher Edwards. Qos-enabled improvements for the
network mobility protocol. In Vehicular Technology Conference Fall (VTC 2010-Fall), 2010
IEEE 72nd, pages 1–5. IEEE, 2010.

[78] Zaher Owda, Mohammed Abuteir, and Roman Obermaisser. Co-simulation
framework for networked multi-core chips with interleaving discrete event simulation tools. In
2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA),
pages 1–8. IEEE, 2015.

[79] Mario Paolone, Marco Pignati, Paolo Romano, Stela Sarri, Lorenzo Zanni, and
Rachid Cherkaoui. A hardware-in-the-loop test platform for the real-time state estimation of
active distribution networks using phasor measurement units. In Proc. Cigré SC6
Colloquium, 2013.

[80] P Prinetto, Alfredo Benso, Fulvio Corno, M Rebaudengo, M Sonza Reorda,
A Amendola, L Impagliazzo, and P Marmo. Fault behavior observation of a microprocessor
system through a vhdl simulation-based fault injection experiment. In Proceedings of the
conference on European design automation, pages 536–541. IEEE Computer Society Press,
1996.

[81] Luca Pugi. Hil testing of on-board subsystems: Some case studies and applications.
In Francesco Flammini, editor, Railway Safety, Reliability and Security. IGI Global, 2012.

[82] Dr. Rainer Rasche. Asam xil 2.0: Standard für ein durchgängiges testen im gesamten
produktentstehungsprozess. In 7. Vector Congress, 2014.

[83] S Reiter, M Becker, O Bringmann, A Burger, M Chaari, R Drechsler, W Ecker,
T Kruse, C Kuznik, J Laufenberg, et al. Fehlereffektsimulation mittels virtueller prototypen.

[84] Patrick F Riley and George F Riley. Spades. ”a distributed agent simulation
environment with software-in-the-loop execution”. In Proceedings of the 2003 Winter
Simulation Conference S. Chick, PJ Sánchez, D. Ferrin, and DJ Morrice, eds.

[85] Patrick J Roache and Patrick M Knupp. Completed richardson extrapolation.
Communications in Numerical Methods in Engineering, 9(5):365–374, 1993.

[86] José Rodrguez-Piñeiro, José A Garcá-Naya, Angel Carro-Lagoa, and Luis Castedo.
A testbed for evaluating lte in high-speed trains. In Digital System Design (DSD), 2013
Euromicro Conference on, pages 175–182. IEEE, 2013.

[87] Alireza Rohani and Hans G Kerkhoff. A technique for accelerating injection of
transient faults in complex socs. In Digital System Design (DSD), 2011 14th Euromicro
Conference on, pages 213–220. IEEE, 2011.

[88] Matthias Sand, Stefan Potyra, and Volkmar Sieh. Deterministic high-speed simulation
of complex systems including fault-injection. In 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks, pages 211–216. IEEE, 2009.

[89] Ina Schieferdecker. Test automation with ttcn-3 - state of the art and a future
perspective. In José Carlos Alexandre Petrenko, Adenilso Simao; Maldonado, editor, Testing
Software and Systems, pages 1–13. Lecture Notes in Computer Science, 2013.

[90] Tom Schierz, Martin Arnold, and Christoph Clauß. Co-simulation with communication
step size control in an fmi compatible master algorithm. In Proceedings of the 9th
International MODELICA Conference; September 3-5; 2012; Munich; Germany, number 076,
pages 205–214. Linköping University Electronic Press, 2012.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 78 of 79

[91] Bernd-Holger Schlingloff and Sasa Vulinovic. Zuverlässigkeitsprüfung eingebetteter
steuergeräte mit modellgetriebener fehlerinjektion. 2005.

[92] Volkmar Sieh, Oliver Tschache, and Frank Balbach. Verify: Evaluation of reliability
using vhdl-models with embedded fault descriptions. In Fault-Tolerant Computing, 1997.
FTCS-27. Digest of Papers., Twenty-Seventh Annual International Symposium on, pages
32–36. IEEE, 1997.

[93] Aleksander Sniady, Jose Soler, Mohamed Kassab, and Marion Berbineau. Ensuring
long-term data integrity: Etcs data integrity requirements can be fulfilled even under
unfavorable conditions with the proper lte mechanisms. IEEE Vehicular Technology
Magazine, 11(2):60–70, 2016.

[94] Aleksander Sniady, Morten Sonderskov, and José Soler. Volte performance in
railway scenarios: Investigating volte as a viable replacement for gsm-r. IEEE Vehicular
Technology Magazine, 10(3):60–70, 2015.

[95] Patrick Sondi, Marion Berbineau, Mohamed Kassab, and Georges Mariano.
Generating test scenarios based on real-world traces for ertms telecommunication
subsystem evaluation. In International Workshop on Communication Technologies for
Vehicles, pages 223–231. Springer, 2013.

[96] Steffen Straßburger. On the hla-based coupling of simulation tools. In Proceedings of
the 1999 European Simulation Multiconference, volume 1, pages 45–51, 1999.

[97] Wenhao Sun, Xudong Cai, and Qiao Meng. Testing flight software on the ground:
Introducing the hardware-in-the-loop simulation method to the alpha magnetic spectrometer
on the international space station. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 815:83–90,
2016.

[98] Evoke Technologies. How to design an effective test automation framework, October
2014.

[99] Stavros Tripakis. Bridging the semantic gap between heterogeneous modeling
formalisms and fmi. In Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS), 2015 International Conference on, pages 60–69. IEEE, 2015.

[100] Timothy K Tsai, Ravishankar K Iyer, and Doug Jewitt. An approach towards
benchmarking of fault-tolerant commercial systems. In Fault Tolerant Computing, 1996.,
Proceedings of Annual Symposium on, pages 314–323. IEEE, 1996.

[101] FEDERAL AVIATION ADMINISTRATION U.S. DEPARTMENT
OF TRANSPORTATION. Software approval guidelines. https://www.faa.gov/-
documentLibrary/media/Order/Order_8110.49_Chg_1.pdf, 2011.

[102] Cheng-Xiang Wang, Ammar Ghazal, Bo Ai, Yu Liu, and Pingzhi Fan. Channel
measurements and models for high-speed train communication systems: a survey. IEEE
Communications Surveys & Tutorials, 18(2):974–987, 2015.

[103] Xiaoxuan Wang, Hailin Jiang, Tao Tang, and Hongli Zhao. The qos analysis of train-
ground communication system based on td-lte in urban rail transit. In Intelligent Rail
Transportation (ICIRT), 2016 IEEE International Conference on, pages 49–54. IEEE, 2016.

[104] Tao Wen, Xinnan Lyu, David Kirkwood, Lei Chen, Costas Constantinou, and Clive
Roberts. Co-simulation testing of data communication system supporting cbtc. In 2015 IEEE
18th International Conference on Intelligent Transportation Systems, pages 2665–2670.
IEEE, 2015.

[105] Alan Facchinetti and Stefano Bruni. Hardware-in-the-loop hybrid simulation of
pantograph–catenary interaction. In Journal of Sound and Vibration, Volume 331, Issue 12,
2012, pages 2783-2797, 2012.

D3.1 – Report on state-of-the-art analysis and
 initial requirements for the distributed simulation framework

Safe4RAIL D3.1 Page 79 of 79

[106] Peter Terwiesch, Thomas Keller and Erich Scheiben. Rail vehicle control system
integration testing using digital hardware-in-the-loop simulation. In IEEE Transactions on
Control Systems Technology, vol. 7, no. 3, pages 352-362, May 1999.

[107] J. N. Verhille, A. Bouscayrol, P. J. Barre and J. P. Hautier. Hardware-in-the-loop
simulation of the traction system of an automatic subway. In 2007 European Conference on
Power Electronics and Applications, pages 1-9, Aalborg, 2007.

[108] J. N. Verhille, A. Bouscayrol, P. J. Barre and J. P. Hautier. Validation of anti-slip
control for traction system using Hardware-In-the-Loop simulation. In IEEE Vehicle Power
and Propulsion Conference, Arlington, TX, pages 440-447, 2007.

[109] Silvio Baccari, Giulio Cammeo, Christian Dufour, Luigi Iannelli, Vincenzo
Mungiguerra, Mario Porzio, Gabriella Reale, and Francesco Vasca. Real-Time Hardware-in-
the-Loop in Railway:Simulations for Testing Control Software of Electromechanical Train
Components. In Railway Safety, Reliability, and Security: Technologies and Systems
Engineering, pages 221-248, May 2012.

