

D2.4

Report on TCMS framework instantiation
Project number: 730830

Project acronym: Safe4RAIL

Project title:
Safe4RAIL: SAFE architecture for Robust

distributed Application Integration in roLling stock

Start date of the project: 1st of October, 2016

Duration: 24 months

Programme: H2020-S2RJU-OC-2016-01-2

Deliverable type: Report

Deliverable reference number: ICT-730830 / D2.4 / 1.1

Work package WP2

Due date: March 2018 – M18

Actual submission date: 30th of March, 2018

Responsible organisation: SIE

Editor: Hongjie Fang

Dissemination level: Public

Revision: 1.1

Abstract:
This report describes the design instantiation of
the proposed Functional Distribution Framework
based on AUTOSAR, PikeOS and INTEGRITY.

Keywords:
TCMS Functional Distribution Framework, Design

instantiation, AUTOSAR, INTEGRITY, PikeOS,

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
730830.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page II

Editor

Hongjie Fang (SIE)

Contributors (ordered according to beneficiary numbers)

Hongjie Fang (SIE)

Iñigo Odriozola, Ekain Azketa, Asier Larrucea (IKL)

Jan Löwe (IAV)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The content of this document reflects
only the author’s view – the Joint Undertaking is not responsible for any use that may be
made of the information it contains. The users use the information at their sole risk and
liability.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page III

Executive Summary

This deliverable summarizes the TCMS Functional Distribution Framework (FDF) design of
Safe4RAIL project in conceptual and structural view and aims to provide a feasibility report to
bridge the FDF concept design and the FDF proof-of-concept implementation.

This document provides a detailed report of three design instantiations (AUTOSAR Adaptive
Platform (in this text denoted by AUTOSAR), PikeOS and INTEGRITY), based on the TCMS
FDF concept design in D2.3 and based on the safety and security concepts described in
Chapters 3 and 4, respectively of this deliverable. This report describes the design
instantiation in AUTOSAR of the FDF design concept, in order to check the feasibility of
mapping the defined elements and components to the building blocks of AUTOSAR. The
documentation also characterizes the design instantiation in mixed-criticality PikeOS
hypervisor as well as in RTOS INTEGRITY. In these two design instantiations, the
conceptual elements of the FDF design are mapped to the paradigms in PikeOS and
INTEGRITY. The services of the structural design are also analyzed to cope with the APIs
provided by PikeOS and INTEGRITY.

Finally, the deliverable defines the unique set of APIs for the hosted applications of the
framework to ensure the portability of the applications which will standardize interfaces of the
next generation TCMS framework, in line with Shift2Rail objectives.These three approaches
are viable to provide a basis for next generation TCMSs. PikeOS and INTEGRITY are well
proven and tested in lots of ECUs in various safety-related applications. AUTOSAR, on the
other hand, is still in development and aims specifically at the automotive domain, omitting
some railway-relevant features and leaving open questions when it comes to certification, as
both domains take different approaches and railway applications usually require a higher
safety level.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page IV

Contents

List of Figures ... 8

List of Tables .. 10

Chapter 1 Introduction ... 1

1.1 About this document .. 1

1.2 Functional Distribution Framework design ... 1

1.2.1 Conceptual view ... 1

1.2.2 Structural view ... 2

1.3 Functional Distribution Framework design instantiation 3

Chapter 2 Functional Distribution Services Design .. 4

2.1 FrameworkManager ... 4

2.2 ConfigurationManager ... 5

2.3 FunctionManager ... 6

2.4 HealthManager .. 7

2.5 IOManager ... 9

2.6 LogManager ... 11

2.7 VariableManager.. 12

2.8 MessageManager .. 13

2.9 MonitoringManager .. 14

2.10 NetworkManager .. 14

2.11 RedundancyManager ... 15

2.12 SynchronizationManager .. 16

2.13 TopologyManager .. 16

2.14 DeploymentManager .. 17

2.15 CryptoManager ... 17

2.16 UserAccountManager ... 18

2.17 SecurityMonitoringManager.. 19

Chapter 3 FDF design instantiation based on AUTOSAR 22

3.1 Mapping conceptual design ... 22

3.1.1 Variable ...24

3.1.2 Message ...25

3.1.3 Shared Memory ..25

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page V

3.1.4 Function ..25

3.1.4.1 Application Function ..25

3.1.4.2 Service Function ...25

3.1.4.2.1 IO Function ... 25

3.1.4.2.2 Time Function ... 25

3.1.4.2.3 Message Function .. 25

3.1.4.2.4 Network Function .. 25

3.1.4.2.5 Monitoring Function .. 26

3.1.4.2.6 Deployment Function.. 26

3.1.4.2.7 Log Function ... 26

3.1.5 Process ...26

3.1.6 Partition ...26

3.1.7 Schedule ...27

3.1.7.1 Partition Schedule ...27

3.1.7.2 Process Schedule ...27

3.1.7.3 Function Schedule ...27

3.2 Mapping structural design .. 28

3.2.1 Hardware Access Services ...29

3.2.1.1 IODriverManager ...29

3.2.1.2 NICDriverManager ..29

3.2.1.3 WDGDriverManager ..29

3.2.1.4 ECUDriverManager ...29

3.2.2 Operating System Services ...30

3.2.2.1 FileManager ..30

3.2.2.2 MemoryManager ...30

3.2.2.3 ConcurrencyManager ..30

3.2.2.4 TimeManager ..30

3.2.2.5 SocketManager ...30

3.2.2.6 LibraryManager ...30

3.2.2.7 ExecutionManager ..30

3.2.3 Functional Distribution Services ..30

3.2.3.1 VariableManager ...30

3.2.3.2 MessageManager..30

3.2.3.3 ConfigurationManager ...31

3.2.3.4 NetworkManager ...31

3.2.3.5 MonitoringManager ...31

3.2.3.6 IOManager ..31

3.2.3.7 SynchronizationManager ...31

3.2.3.8 FunctionManager ..31

3.2.3.9 FrameworkManager ..31

3.2.3.10 HealthManager ..31

3.2.3.11 LogManager ..32

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page VI

3.2.3.12 TopologyManager ...32

3.2.3.13 RedundancyManager ..32

3.2.3.14 DeploymentManager ...32

3.2.3.15 CryptoManager ...32

3.2.3.16 UserAccountManager ..32

3.2.3.17 SecurityMonitoringManager ...32

3.3 Summary and Conclusion of Adaptive AUTOSAR Instantiation 32

Chapter 4 FDF design instantiation based on RTOS INTEGRITY 36

4.1 Mapping conceptual design ... 36

4.1.1 Variable ...36

4.1.2 Message ...36

4.1.3 Shared Memory ..36

4.1.3.1 Variable Memory ...37

4.1.3.2 Message Memory ..37

4.1.4 Function ..37

4.1.4.1 Application Function ..37

4.1.4.2 Service Function ...37

4.1.5 Process ...37

4.1.6 Partition ...38

4.1.7 Schedule ...38

4.1.7.1 Partition Schedule ...38

4.1.7.2 Process Schedule ...39

4.1.7.3 Function Schedule ...39

4.2 Mapping structural design .. 40

4.2.1 Hardware Access Services ...40

4.2.1.1 ECUDriverManager ...40

4.2.1.2 NICDriverManager ..40

4.2.1.3 IODriverManager ...41

4.2.1.4 IWDDriverManager ..42

4.2.2 Operating System Services ...42

4.2.2.1 MemoryManager ...42

4.2.2.2 ExecutionManager ..42

4.2.2.3 TimeManager ..43

4.2.2.4 ConcurrencyManager ..43

4.2.2.5 SocketManager ...43

4.2.2.6 FileManager ..44

4.2.2.7 LibraryManager ...44

4.3 Summary and Conclusion of Integrity-based Instantiation 44

Chapter 5 FDF design instantiation based on Hypervisor PikeOS................. 47

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page VII

5.1 Mapping conceptual design ... 48

5.1.1 Variable ...48

5.1.2 Message ...48

5.1.3 Shared Memory ..48

5.1.3.1 Variable Memory ...49

5.1.3.2 Message Memory ..49

5.1.4 Function ..49

5.1.4.1 Application Function ..49

5.1.4.2 Service Function ...49

5.1.5 Process ...49

5.1.6 Partition ...50

5.1.7 Schedule ...50

5.1.7.1 Partition Schedule ...50

5.1.7.2 Process Schedule ...51

5.1.7.3 Function Schedule ...51

5.2 Mapping structural design .. 51

5.2.1 Hardware Access Services ...51

5.2.2 Operating System Services ...52

5.2.2.1 FileManager ..52

5.2.2.2 MemoryManager ...52

5.2.2.3 ConcurrencyManager ..52

5.2.2.4 TimeManager ..53

5.2.2.5 ExecutionManager ..53

5.2.2.6 SocketManager ...54

5.2.2.7 LibraryManager ...54

5.3 Summary and Conclusion of Hypervisor-based Instantiation 54

Chapter 6 Summary and conclusion ... 56

Chapter 7 List of Abbreviations .. 57

Chapter 8 Bibliography .. 59

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page VIII

List of Figures

Figure 1 - Functional Distribution Framework .. 3

Figure 2 – FrameworkManager ... 4

Figure 3 – ConfigurationManager .. 5

Figure 4 – FunctionManager .. 6

Figure 5 – HealthManager ... 7

Figure 6 – IOManager ..10

Figure 7 – LogManager ..11

Figure 8 - General VariableManager ..12

Figure 9 - Specific VariableManager ...12

Figure 10 – MessageManager ..13

Figure 11 – MonitoringManager ..14

Figure 12 – NetworkManager ...14

Figure 13 – RedundancyManager ..15

Figure 14 – SynchronizationManager ...16

Figure 15 – TopologyManager ..16

Figure 16: DeploymentManager. ..17

Figure 17 – Communication in service-oriented-architecture ..22

Figure 18 - Service management via the communication manager23

Figure 19 - Hypervisor architecture ...27

Figure 20 - AP architecture logical view ..28

Figure 21 - AP service categories ...29

Figure 22 - Example MemoryRegion ..37

Figure 23 - Example AddressSpace ...38

Figure 24 - Example Partition Schedule ...39

Figure 25 - Example Process Schedule ..39

Figure 26 - ECUDriverManager. ...40

Figure 27 – NICDriverManager ...41

Figure 28 – IODriverManager ...41

Figure 29 – WDDriverManager ...42

Figure 30 – MemoryManager ...42

Figure 31 - ExecutionManager. ..42

Figure 32 – TimeManager ..43

Figure 33 – ConcurrencyManager ..43

Figure 34 – SocketManager ...44

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page IX

Figure 35 – FileManager ..44

Figure 36 - LibraryManager. ...44

Figure 37 - PikeOS System Architecture ..47

Figure 38 - Mapping between partitions and CPU time windows ..50

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page X

List of Tables

Table 1 – FrameworkManager ... 5

Table 2 – ConfigurationManager ... 5

Table 3 – FunctionManager (part 1) .. 6

Table 4 - FunctionManager (part 2) ... 6

Table 5 – HealthManager (part 1) .. 7

Table 6 - HealthManager (part 2) .. 8

Table 7 - HealthManager (part 3) .. 8

Table 8 - HealthManager (part 4) .. 8

Table 9 - HealthManager (part 5) .. 8

Table 10 - HealthManager (part 6)... 9

Table 11 - HealthManager (part 7)... 9

Table 12 - HealthManager (part 6)... 9

Table 13 – IOManager (part 1) ...10

Table 14 - IOManager (part 2) ..10

Table 15 - IOManager (part 3) ..10

Table 16 - IOManager (part 4) ..11

Table 17 – LogManager (part 1) ...11

Table 18 - LogManager (part 2) ..11

Table 19 – Specific VariableManager ...12

Table 20 – MessageManager (part 1) ...13

Table 21 - MessageManager (part 2) ...13

Table 22 - MessageManager (part 3) ...14

Table 23 – MonitoringManagermo ..14

Table 24 – NetworkManager (part 1) ..15

Table 25 - NetworkManager (part 2) ...15

Table 26 - RedundancyManager ..15

Table 27 – SynchronizationManager ..16

Table 28 – TopologyManager (part 1) ..16

Table 29 - TopologyManager (part 2) ...17

Table 30 – DeploymentManager ..17

Table 31 - Summary of FDF design instantiation based on AUTOSAR35

Table 32 – Summary of FDF design instantiation based on INTEGRITY46

Table 33 – Summary of FDF design instantiation based on PikeOS55

Table 34: List of Abbreviations ...58

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 1 of 59

Chapter 1 Introduction

1.1 About this document

The main task of WP2 of Safe4RAIL is to provide the “Functional Distribution” architecture
concept for a mixed criticality embedded platform, offering an execution environment for
multiple Train Control and Monitoring System (TCMS) application functions with a virtual bus
inside the end-system.

This document aims at providing a detailed report of three design instantiations (AUTOSAR,
PikeOS and INTEGRITY), based on the TCMS framework concept design in D2.3. This
report describes the design instantiation in AUTOSAR of the “TCMS framework” design
concept and characterizes the design instantiation in mixed-criticality PikeOS hypervisor as
well as in RTOS INTEGRITY. This instantiation report covers both the FDF conceptual
design and the structural design, meanwhile taking the defined safety and security concepts
into account described in D2.3, Chapters 3 and 4, respectively.

According to the comparative analysis of ARINC 653 in D2.2, the execution environment
defined by ARINC 653 targets at static system configuration, which deviates from the
dynamic system configuration requirement for next generation TCMS. Therefore, this report
does not cover the instantiation of the TCMS framework concept based on ARINC 653.

This deliverable will be organized in this way: Chapter 1 summarizes the Functional
Distribution Framework (FDF) design in D2.3. The Functional Distribution Services (FDS)
design for the FDF will be characterized in Chapter 2. Chapter 3 describes the FDF design
instantiation in AUTOSAR, taking the FDS defined in D2.3 into account. Chapter 4 and
Chapter 5 provide the design instantiation based on INTEGRITY and PikeOS. In Chapter 6,
the summary and conclusion are provided.

1.2 Functional Distribution Framework design

The Functional Distribution Framework (FDF), the application framework concept for modular
integration of TCMS applications, aims to host distributed safety-critical and non-critical
application side-by-side on the same hardware platform in distributed next-generation TCMS
systems. The goal of this mixed-criticality application is to provide solutions to fulfil functional
safety-critical and non-critical requirements and non-functional requirements (including
security) that support functional distribution, interoperability, reconfiguration, deterministic
inter-partition communication, hardware and communication abstraction and virtual coupling
of services. For more information, please consult Safe4RAIL deliverable “D2.3 – Report on
‘TCMS framework concept’ design, security concepts, and assessment” [2].

1.2.1 Conceptual view

The Functional Distribution Framework uses a set of physical and logic elements that interact
with each other. The physical ones are mainly:

Partition: Execution environment with an isolated memory address space and limited
execution time. With it we achieve temporal separation.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 2 of 59

Process: Thread or group of threads with an isolated memory address space, with which we
achieve spatial separation.

Shared Memory: Memory that may be simultaneously accessed by multiple processes.

Apart from these, we would have the NIC, IO Card or the system clock.

Regarding the logic elements, three main ones are identified:

Function: Schedulable software that executes some logic. It can be of two types:

Service Functions: These functions are provided by the FDF to offer its services.
They have configurable logic and can be of as many types as services provided by
the FDF: IO, Time, Message, Network, Monitoring and Log etc.

Application Function: This type of function I provided by the user to offer the
application logic. In order to achieve the abstraction we want, these functions are
registered in the Framework using its API and can only have access to Variables
Shared Memories.

Variable: Data structure to share information between Functions.

Message: Data structure to share Variables between remote Functions.

1.2.2 Structural view

The Functional Distribution Framework is structured in a set of Software Components which
handle the management of a given service provided by the framework. Some components
may have different versions for different SILs, which implement the safety mechanisms for
that SIL. FDF components are grouped in three blocks, depending on the service they
provide, in order to ease the portability that it is intended to achieve in this project:

 Hardware Access Services: These components have the same interface but
different implementations for different sort of hardware. They provide IO, NIC or
Watchdog management. This block can be completely implemented or, alternatively,
wrapper functions can be developed to access services provided by the underlying
Drivers.

 Operating System Services: These components have the same interface but
different implementation for different Platforms/Operating Systems. This block can be
completely implemented or, alternatively, wrapper functions can be developed to
access services provided by the underlying Operating System.

 Functional Distribution Services: The code of these components is portable across
different Platforms/Operating Systems because the Hardware Access Service and
Operating System Service layers provide specified interfaces.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 3 of 59

cmp Components

Functional Distribution Framework

Operating System ServicesHardware Access Services

Functional Distribution Services

FrameworkManager FunctionManager

ConfigurationManager

IOManagerVariableManager

NetworkManager MonitoringManager

IODriv erManager NICDriv erManager

SynchronizationManager

FileManager MemoryManager TimeManager

ConcurrencyManager

HealthManager

ExecutionManagerWDDriv erManager

LogManager DeploymentManager RedundancyManager

SocketManager

MessageManager

TopologyManager

LibraryManager

ECUDriv erManager

CryptoManager

UserAccountManager

SecurityMonitoringManager

Figure 1 - Functional Distribution Framework

1.3 Functional Distribution Framework design instantiation

The FDF design instantiation report consists of three parts. The first candidate is the
AUTOSAR that aims to create and establish a standardized software architecture for
automotive electronic control units. The design instantiation on AUTOSAR provides a detail
report, how the conceptual and structural design of the FDF could be mapped to the
elements and components in AUTOSAR, meanwhile take the safety and security concepts
into account. The other two options are based on the RTOS INTEGRITY and the hypervisor
PikeOS. For these design instantiations, since INTEGRITY and PikeOS are both operating
systems running under the FDF, the major point in these design instantiations will be how to
map the designed components in the FDF to the paradigms of both operating systems.

According to the D2.3, the safety and security concepts for the FDF are proposed and the
corresponding countermeasures are specified for the FDF components, hence, this report
concentrates on the instantiation of the FDF design concept.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 4 of 59

Chapter 2 Functional Distribution Services
Design

Since the functional distribution services are defined to make use of the hardware access
services and the operating system services to provide the defined functionalities, these
services are portable across different platforms and operating systems. There are three
proof-of-concept instantiations (INTEGRITY, PikeOS and Adaptive AUTOSAR) where the
functional distribution services may be applied. In this instantiation report, a unique set of
FDF APIs is defined, so that the applications hosted by the FDF will have the same view of
the FDS

2.1 FrameworkManager

The FrameworkManager can be considered the brain of the Functional Distribution
Framework. This component offers a complete set of functions to setup the different services
of each instance with its only interface, IFrameworkManager. It commands the
ConfigurationManager to load the configuration and initializes all the services, which means
that once the configuration is read, all the required logic elements are created, logic and
drivers are loaded and instances created. With register() and a set of getter calls it allows
applications to be registered to be executed by it and the ability to access variables in the
shared memories, respectively. Apart from the standard variables it may also provide the
possibility to access and go through concrete complex structures with a given semantic such
as the topology.

Figure 2 – FrameworkManager

Function Description Possible callers

Configure()
This function is used to command the ConfigurationManager to load the
configuration file.

Applications

Execute() This function starts the cyclic execution of the FDF. Applications

Get_log() An application can retrieve all the information of a log object. Applications

Get_topology()
An application calls this function to get the topology-related information. It
receives a reference to the topology object.

Applications.

Get_variable()
An application calls this function to access variables. It receives a
reference to the Variable object.

Applications

Initialize() It calls the initialize() function of all other managers. It creates
instantiations of the different components. It loads the drivers; it creates

Applications

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 5 of 59

the Variables and Messages Stores and Service Functions.

Register() An application calls this function to register its own application functions. Applications

Table 1 – FrameworkManager

2.2 ConfigurationManager

This component provides first an initialize() function to load the selected configuration file,
load it and parse it, apart from checking the loaded files CRC. The unique interface offers
functions to retrieve configuration objects, once the selected configuration file is loaded. It
iterates through the list of configuration items by the use of getter functions.

Figure 3 – ConfigurationManager

Function Description Possible callers

Initialize() Load a configuration file, check CRC, parse a configuration file FrameworkManager

Get_***_next()
Whole set of getters to retrieve all the information on the configuration
by iterating one by one through the list of loaded objects.

FrameworkManager

Table 2 – ConfigurationManager

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 6 of 59

2.3 FunctionManager

This manager is in charge of reading through the list of functions that have been registered
and executing each of them. It offers two interfaces. The first one, IFunctionManager loads
the FunctionSchedule with the list of functions that needs to execute and offers the register()
function by the use of which the FrameworkManager can register application functions from
the outside. On the other hand, this FunctionManager implements the IFunction interface.
The IFunctionManager executes this interface.

All functions provided by those interfaces have an identifier as one of the parameters, which
is returned in the initialize() function.

Figure 4 – FunctionManager

Function of
IFunctionManager

Description Possible callers

Execute() Execute the registered functions FrameworkManager.

Initialize()
Gives the configurable parameters as arguments. It gets the
schedule of functions, i.e., the list of functions to be executed
sequentially and the cycles in which they are executed.

FrameworkManager

Register()
Register a function, with its “execution time”, the Variable where it
is stored the last execution time, and “execution_flag”, which
activates or inhibits the execution of this particular function.

FrameworkManager

Table 3 – FunctionManager (part 1)

Function of IFunction Description Possible callers

Execute() To execute this function FunctionManager

Get_identifier() To retrieve the function ID FunctionManager

Table 4 - FunctionManager (part 2)

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 7 of 59

2.4 HealthManager

It handles the health-monitoring functionalities. This component is among the most critical
components since it not only makes internal checks such as CPU temperature check, but it is
also responsible for refreshing the watchdog, checking the integrity of the memory or even to
advise the ExecutionManager to stop or kill the faulty process.

In order to grant such health-monitoring functionalities it offers the following set of interfaces:

Figure 5 – HealthManager

Function of IWDFunction Description Possible callers

Execute() To execute this WatchDog function FunctionManager

Initialize()
It links the HealthFunction to the “driver” of the
watchdog

FrameworkManager

Table 5 – HealthManager (part 1)

Function of IDeadlineFunction Description Possible callers

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 8 of 59

Execute()

To execute this function. It monitors the execution of
a function. The FunctionManager measures the
“execution_time” and stores it in the execution_time
variable, then it compares this time to the “deadline”
and acts accordingly, i.e., activate the
“deadline_error” variable to indicate something is
going wrong.

FunctionManager

Initialize()
When called the configurable logic is given.
“Deadline”, “execution_time” and "deadline_error”
are set.

FrameworkManager

Table 6 - HealthManager (part 2)

Function of ILoadFunction Description Possible callers

Execute()
Executes the load of a specific device through
the ECUDriver.

FunctionManager

Initialize() Initializes the load function. FrameworkManager

Table 7 - HealthManager (part 3)

Function of
IOutputFunction

Description Possible callers

Execute()
It is read the timestamp of specified variables
and it is checked if they have been updated in
the current cycle or not.

FunctionManager

Initialize() Initializes the output function. FrameworkManager

Table 8 - HealthManager (part 4)

Function of
ITemperatureFunction

Description Possible callers

Execute()

Reads the temperature of the specified device
through the ECUDriver and checks if the
temperature is lower than the predefined
maximum temperature and higher than the
predefined minimum temperature.

FunctionManager

Initialize() Initialized the temperature reading. FrameworkManager

Table 9 - HealthManager (part 5)

Function of
IDisableExecutionFunction

Description Possible callers

Execute()
To execute this function. The execution flag of a given
function can be set to false to deactivate this function.

FunctionManager

Initialize() When called the configurable logic is given. The variable
that triggers the command to disable is set by “trigger”

FrameworkManager

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 9 of 59

parameter and the execution flag to be set to false in
“execution_flag”.

Table 10 - HealthManager (part 6)

Function of
ITerminateProcessFunction

Description Possible callers

Execute()

To execute this function. The health manager
alerts the application logic and provides the
means to kill a process when it takes too long
or is constantly producing wrong variable
values or variables with the bad quality flag.

FunctionManager

Initialize()
When called the configurable logic is given.
“Trigger” is the variable which provokes to
terminate the process “process_identifier”.

FrameworkManager

Table 11 - HealthManager (part 7)

Function of
IResetPlatformFunction

Description Possible callers

Execute()

To execute this function. It sets a variable as a
trigger to stop refreshing the watchdog and
with it force the reset of the platform when a
hazardous situation is given.

FunctionManager

Initialize()
When called the configurable logic is given.
“Trigger” is the variable which provokes to stop
refreshing the watchdog “watchdog”.

FrameworkManager

Table 12 - HealthManager (part 6)

2.5 IOManager

This software component provides an interface for each of the different IO device types. It
links a given variable to a channel of a concrete driver so that the value of the pin that will be
read is stored in this location on the shared memory and those variables that need to be
written are taken from there to provide an output.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 10 of 59

Figure 6 – IOManager

Function of IAIFunction Description Possible callers

Execute() To execute this function FunctionManager

Initialize()
Link a “channel” of the “driver” to the “variable” in which the
input will be stored.

FrameworkManager

Table 13 – IOManager (part 1)

Function of IDIFunction Description Possible callers

Execute() To execute this function FunctionManager

Initialize()
Link a “channel” of the “driver” to the “variable” in which the
input will be stored.

FrameworkManager

Table 14 - IOManager (part 2)

Function of IDOFunction Description Possible callers

Execute() To execute this function FunctionManager

Initialize()
Link a “channel” of the “driver” to the “variable” with which
the Output will be written. Indicate the Variable in which it
will be indicated if the writing went wrong: “error”.

FrameworkManager

Table 15 - IOManager (part 3)

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 11 of 59

Function of IAOFunction Description Possible callers

Execute() To execute this function FunctionManager

Initialize()
Link a “channel” of the “driver” to the “variable” with which
the Output will be written. Indicate the Variable in which it
will be indicated if the writing went wrong: “error”.

FrameworkManager

Table 16 - IOManager (part 4)

2.6 LogManager

This service gives the ability to write logs in log files. ILog encapsulates the file and is
responsible for writing the message and introducing the timestamp without altering the
format. The second interface, ILogFunction, logs a set of variables together with the
message and timestamp in a log object when the trigger is set to true.

Figure 7 – LogManager

Function of ILog Description Possible callers

add() Adds functions to record Log entries. ILogFunction

Initialize()
Link the function to the file in which the log will be stored.
“file_name” is a path to the file.

FrameworkManager

write() Write a message in the log file. ILogFunction and applications.

Table 17 – LogManager (part 1)

Function of ILogFunction Description Possible callers

Execute() To execute this function FunctionManager

Initialize()
Link this concrete logFunction to a “log” object. When the
“trigger” is true, the value of a set of “variables” is stored
along with a “message” in the log.

FrameworkManager

Table 18 - LogManager (part 2)

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 12 of 59

2.7 VariableManager

This component handles the management of the variables in the shared memories. It
contains a generic interface IVariable to create variables by giving the set of parameters
needed to form a variable, i.e., the type of variable and location in both regular shared
memory and the mirrored one, the size it takes and whether concurrent access is permitted
or not. The interface also provides functions to get the timestamp, the size and variable type,
but also the quality and whether it is forced or not.

class IVariable

«interface»

IVariable

+ initialize(identifier: string, type: VariableType, memory_address: memory*, memory_address_mirror: memory*, memory_default: memory*, memory_size: unsigned32, concurrent_access: boolean): integer32

+ get_value(value: memory*): integer32

+ set_value(value: memory*): integer32

+ get_quality(): boolean1

+ set_quality(quality: boolean1): void

+ get_forced(): boolean1

+ set_forced(forced: boolean1): void

+ get_time(time: timespec*): integer32

+ get_size(): unsigned32

+ get_default_value(value: memory*): integer32

+ get_type(): VariableType

Figure 8 - General VariableManager

This generic interface is then inherited by that of every sort of different basic types such as
String, Boolean, Float, integer or unsigned integer. The initialize() function of every one of
these interfaces requires type-specific data such as minimum and maximum value in the
case of the Float, for instance.

Figure 9 - Specific VariableManager

Function of IVariable Description Possible callers

Initialize()
Create an object for the Variable which is linked to a particular
position in memory. Give the type, size, default value, whether
it is possible to access it concurrently or not.

FrameworkManager

Get_/Set_***
A set of getters and setters to access and manipulate attributes
of the Variable.

All

Table 19 – Specific VariableManager

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 13 of 59

2.8 MessageManager

MessageManager, by the use of IMessage, provides the ways to create Message type
structures and get and set those in the corresponding shared memory. Besides, there is also
the possibility to create Message parsing functions as well as functions to compose a given
Message by packing together a set of Variables by the provided IParseFunction and
IComposeFunction, respectively.

Figure 10 – MessageManager

Function of IMessage Description Possible callers

Get_value()
Get message data from specified memory_address
and store it in a “buffer” of size “length”.

IParseFunction and
ISendFunction

Initialize() Create a Message object with a concrete “length”. FrameworkManager

Set_value() Set message data on position “memory_address”.
IComposeFunction and

IReceiveFunction

Table 20 – MessageManager (part 1)

Function of IComposeFunction Description Possible callers

Execute() Execute this function. FunctionManager

Initialize()
Give configurable logic. Determine which
“variables” compose the “message”.

FrameworkManager

Table 21 - MessageManager (part 2)

Function of IParseFunction Description Possible callers

Execute() Execute this function. FunctionManager

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 14 of 59

Initialize()
Give configurable logic. Determine in which “variables”
the “message” is decomposed.

FrameworkManager

Table 22 - MessageManager (part 3)

2.9 MonitoringManager

Monitoring means that a given port is provided so that an external device can connect from
the outside to check the values of a set of variables. These information needs to be given in
the initialize() function of its interface so that the necessary permissions are given.

Figure 11 – MonitoringManager

Function of IMonitoringFunction Description Possible callers

Execute() To execute this function FunctionManager

Initialize()
Enables the monitoring of a set of “variables”
through a given “port”.

FrameworkManager

Table 23 – MonitoringManagermo

2.10 NetworkManager

All the interactions with the NIC device going through the sockets of the operating System
are handled by this Manager. It mainly adds and checks the application layer information on
the Messages heading or coming from the network. Its only interface offers two functions,
one for outgoing data and another one for incoming one, both of which need the name of the
identifier of the message, the port to be used and an address.

Figure 12 – NetworkManager

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 15 of 59

Function of
IReceiveFunction

Description Possible callers

Execute() Execute this function to receive a message FunctionManager

Initialize()
Gives the configurable logic. Determine in which “port”
this function will receive the “message” from.

FrameworkManager

Table 24 – NetworkManager (part 1)

Function of ISendFunction Description Possible callers

Execute()
Execute this function to send a
message

FunctionManager

Initialize()

Gives the configurable logic.
Determine the use of which “port”
this function will send the
“message”.

FrameworkManager

Table 25 - NetworkManager (part 2)

2.11 RedundancyManager

The FDF makes all sort of redundancy handling in this component. It handles partition
redundancy, output redundancy and provides the possibility to make cross-monitoring when
voting is involved in a given topology for the IMP, for instance. In its initialize() function,
concretely, it is indicated which variable it needs to listen to in the ECU which is in stand-by
in order to determine whether the master ECU is alive or not. For that, a timeout needs to be
provided together with the execution flags of the function to activate when a hot-swap needs
to be carried out.

Figure 13 – RedundancyManager

Function of
IRedundancyFunction

Description Possible callers

Execute() Execute the function. FunctionManager

Initialize()

Gives the configurable logic to the function. The
“keepalive_variable” is updated every certain time. The master
node sends it to indicate that it is alive. If this variable has not
changed in a “keepalive_timeout” time, then the master ECU
can be considered down. “execution_flags” indicates which
flags need to be set to true, i.e., which functions need to start
publishing some outputs now that the master ECU is down in
order to perform the hot-swap.

FrameworkManager

Table 26 - RedundancyManager

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 16 of 59

2.12 SynchronizationManager

This manager is responsible for updating the system clock when the global tick arrives from
the network. For this duty, it offers an initialize() function to link the instance of the
TimeFunction service function which will be created to the driver of the NIC which will provide
this information.

Figure 14 – SynchronizationManager

Function of
ISynchronizationFunction

Description Possible callers

Execute() Execute this function. FunctionManager

Initialize()
Indicate the “driver” from which the function will get the
global time in order to update the system clock time.

FrameworkManager

Table 27 – SynchronizationManager

2.13 TopologyManager

In this manager the changes on the topology are handled. It offers an interface to create
topology objects and another one to link a given port and address to the topology that is
retrieved when making a TTDB request through this concrete port.

Figure 15 – TopologyManager

Function of ITopology Description Possible callers

Initialize()
Map a given slot “memory_address” in the shared memory to
a concrete topology object.

FrameworkManager

Set_Quality() Sets the quality of the topology to ITopologyFunction FrameworkManager

Table 28 – TopologyManager (part 1)

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 17 of 59

Function of ITopologyFunction Description Possible callers

Execute() Execute this function. FunctionManager

Initialize()
Provide the “port” which the function will make a
request to update the topology information in the
“topology” object.

FrameworkManager

Table 29 - TopologyManager (part 2)

2.14 DeploymentManager

The deployment manager provides service to update configuration files and executables
remotely.

Figure 16: DeploymentManager.

Function of IDeploymentFunction Description Possible callers

Execute() Execute this function. FunctionManager

Initialize()

The “port” from which clients will be making
requests to the secure file transfer protocol is
given together with the “authorized_keys_file”,
which contains the list of authorized clients on the
server. Finally, the “result” is indicated as
configurable logic, where the result of the
transaction will show whether everything went
alright or an error occurred.

FrameworkManager

Table 30 – DeploymentManager

2.15 CryptoManager

This software component is the result of the Security Concept and it takes care of the
cryptographic services in the FDF. It provides the interfaces listed below, each of which will
consist in an initialize() function, in which all necessary parameters to perform the
corresponding functionality are given, and an execute() function to actually executing it. They
access Variables and Messages:

 IPublicKeyGenerationFunction: This function generates the corresponding public

key.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 18 of 59

 IPublicKeyVerificationFunction: This function performs an embedded public key

validation.

 IKeyManagementFunction: This function deals with storage, use and deletion.

 ISignatureGenerationFunction: This function generates the corresponding

signature for a hashed message.

 ISignatureVerificationFunction: This function verifies the corresponding signature

for a hashed message.

 IHashGenerationFunction: This function computes the hashing for a block of data,

based on MAC key, key length, data and data_length.

 IHashVerificationFunction: This function verifies hash.

 IEncryptFunction: This function encrypts data based on cipher algorithm, user key,

key length, and so on to generate the cipher text from a plaintext.

 IDecryptFunction: This function decrypts data based on cipher algorithm, user key

length, and so on to generate the plaintext from a cipher text.

 IBase64EncodeFunction: This function encodes data in base 64. This will be a way

to protect data from human-readable format, and when

 IBase64DecodeFunction: This function decodes data in base 64.

2.16 UserAccountManager

This software component is the result of the Security Concept and is responsible for
managing user accounts. It provides four interfaces, each of which will contain an initialize()
function, in which all necessary parameters to perform the corresponding functionality are
given. IUserManagementFunction contains concrete functions to manage user accounts
whereas the rest of the interfaces have an execute() function to run the corresponding action:

 IUserManagementFunction:

o create():This function generates a unique identifier for the user account being

created, and adds all parameters required for user profile, such as, first name,

surname, email, user manager, role, current password, previous password

etc.. A certain number of old passwords will be associated with a user account

to verify passwords are changed properly.

o delete(): it deletes a user account, if user is authorized.

o update(): it modifies user parameters, if user is authorized. For example,

password shall be able to be changed.

 IPasswordCheckFunction: This function checks if password satisfies password

policy, for example, alpha-numeric characters, long, and so on, during the creation of

the password.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 19 of 59

 IPrivilegesSettingFunction: This function based on user role assigns certain

privileges or permissions, applying least privileges philosophy.

 IKeyManagementFunction: This function deals with assigning a key to the created

user, modifying or deleting it.

2.17 SecurityMonitoringManager

This software component is the result of the Security Concept and it monitors the behaviour
of the FDF in terms of service availability, session list and user and application aspects, while
checking authentication issues, execution of untrusted code or notification of attacks. It
provides the following interfaces, each of which will consist in an initialize() function, in which
all necessary parameters to perform the corresponding functionality are given, and an
execute() function to actually executing it:

 IApplicationIdentificationFunction: This function will assigned a unique ID to an

application on the FDF. This ID will be used for tracing application behaviour, that is

for monitoring correct operation of access to CPU and network, data modification and

for notifying to a higher system or administrator when abnormal behaviour is

discovered. This information can be stored in the TPM.

 IApplicationProfileFunction: This function will create an application profile based on

configuration files to trace application permissions.

 IAuthenticationVerificationFunction: This function authenticates user based on

user and password, and on the USB or smartcard containing credentials, device for

example by serial number and applications based on unique identifier.

 ISessionManagementFunction: This function is in charge of creating a session,

locking a session if timeout and closing it.

 ILoginManagementFunction: This function checks logins.

 IAuditEventsConfigurationFunction: This function enables the configuration of

audit events like login, timestamps, audit trail, information for non-repudation,

modification, deletion, user, location, etc.

 IAuditReportingConfigurationFunction: This function enables the configuration of

the audit events defined for reporting. All reports will provide timestamps based on

system time, and additional information considered relevant, user location etc. This

information shall be encrypted and store in a secure way but means of the

CrytoManager.

 IUserLoginReportingFunction: This function enables to list all user accounts and

login history.

 IGetReportFunction: this function enables to get a report, only authorized users

shall get this information. This information will be protected by encryption, digital

signature, digital message reports and timestamps.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 20 of 59

 INetworkMonitoringFunction: This function shall check all related network issues:

insertion of packages, data flooding, loss of communication, replay of messages,

messages to provoke a DoS attack.

 IMonitoringunction: This function will monitor deletion or insertion of configuration

data or detection of insertion of malicious code, very critical.

 IUseNotificationunction: This function will inform administrator about user access

and actions performed.

 IAttackNotificationFunction: This function shall be used in case of determination of

a possible attack: access to CPU, modification of configuration files during execution

or not. This communication can be done by means of email, text messages or any

other means.

 IIncidentSupportConfigurationFunction: This function will enable the configuration

of automated incident notification services to whom corresponds (user or system).

 IIncidentNotificationFunction: This function will notify to an authorized user or

system about an incident. This can be made by e-mails, text messages, or any other

means configured before.

 IPasswordExpirationNotificationFunction: this function shall notify user to modify

password after a period of time defined by an administrator.

 IPasswordStrenghEnforcementFunction: This function shall guarantee that criteria

defined for strength: minimum length, use of upper/lower cases, non-alpha characters

etc. In FSA-AC-2.18 it is set a minimum of 6 characters for passwords.

 IAdministratorAccessVerificationFunction: This function will notify administrator

for getting approval of a user access. This is needed to fulfil FSA-AC-1.2 Dual

Approval Access. The result will be encrypted.

 IMulticastTransmissionVerificationFunction: This function will verify the source

and integrity of the transmissions.

 IMulticastTransmissionHandlingFunction: This function will register authorized

applications to subscribe to multicast transmission, and authorized applications

enabled to send multicast transmissions.

 IErrorHandlingFunction: This function will handle error conditions without providing

information that could be exploited by adversaries.

 IBlacklistingCreationFunction: This function will be used for creating blacklists to

protect FDF against executable code. Administrator can use either black lists or white

lists.

 IWhitelistingCreationFunction: This function will be used for creating whitelists to

protect FDF against executable code.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 21 of 59

 ICommunicationVerificationFunction: This function will check a loss in the

communication for inputs/outputs or any other transmitted message to be applied

upon loss of communications.

 IBackupCreationFunction: This function will create a backup for recovering the

system either as a result of an attack or for any other reason like a failure. This

backup will be at the user level and system level. Only authorized entities will be able

to create it and it will be saved in the TPM.

 IFDFRecoveryFunction: This function will restore the system by means of a secure

backup after a disruption or failure in the system.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 22 of 59

Chapter 3 FDF design instantiation based on

AUTOSAR

The AUTOSAR standard has been developed by major automotive OEMs together with soft-
and hardware suppliers to simplify and accelerate the development of ECUs. While the so-
called Classic Platform (CP) targets the needs of self-contained, monolithic systems, the
newly developed Adaptive Platform (AP) addresses mainly high-performance systems that
are able to run multiple applications in parallel. The AP bases on POSIX operating systems
and pursues a service-oriented approach thus allowing high flexibility in deployment and
update of applications as well as system configuration. Furthermore, it enables modular and
independent development, scalability and partial updates even over the air.

3.1 Mapping conceptual design

The AP follows a service-oriented-architecture. This approach offers many advantages. For
example, it supports the independence of the application software components. It allows
establishing communication paths both at design- and run-time, so it is possible to build up
both static communication with known numbers of participants and dynamic communication
with unknown number of participants. Figure 17 shows the basic operation principle of
communication in service-oriented-architectures.

Figure 17 – Communication in service-oriented-architecture

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 23 of 59

Service Discovery decides whether external and internal service-oriented communication is
established. The discovery strategy shall allow either returning a specific service instance or
all available instances providing the requested service at the time of the request, no matter if
they are available locally or remotely. The service definitions include port and the
communication direction.
AP uses SOME/IP1, which is a service oriented middleware specification on top of IP and has
been developed with the automotive domain in focus.
Communication management software in AP provides an optimized implementation for both
the service discovery and the communication connection, depending on the location where
the service provider resides. The communication manager abstracts all aspects of the
communication including element types, local and remote data handlings. In summary, the
communication manager is responsible for all aspects of communication including the E2E2
security protection.

Figure 18 - Service management via the communication manager

As discussed above, the adaptive application interacts with other applications and the
underlying AP framework through the services. The service based communications get
routed through the communication manager. Figure 18 describes the basic AP

1 Scalable service-Oriented Middleware over IP

2 End-to-End

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 24 of 59

communication framework. Please note that an application might act as a service, too by
providing a certain service interface.

The communication manager receives the service request, decides based on the registered
services and their service manifest configurations, whether the request should be sent via
SOME/IP stack to other nodes through Ethernet, or whether it should be handled via IPC3 in
the same machine.

Furthermore, it should be mentioned that the AP resides upon a POSIX compatible OS. By
definition the OS should provide at least PSE51 profile’s API which is specified in
IEEE1003.13. This API is also available to applications.

One major drawback is mentioned in the AP standard itself:

The Communication Management software using Service-Oriented
Communication will not achieve hard real time requirements, as the

implementation will behave like a virtual ethernet including latencies of
communication. This behaviour must be respected with the design of the

overall ECU and SW system.
(AUTOSAR_SWS_CommunicationManagement)

While this document is being written, the Adaptive AUTOSAR standard is not yet complete.
Thus some modules are not yet fully specified, while others might be subject to change.
Apart from that mature implementations are obviously not available. Therefore latencies are
subject to evaluationas soon as those are released.

The following sub-sections describe the mechanism how the high-level FDF logical elements
(e.g. variables, messages, and functions), FDF physical elements (Shared-memory,
Processes and Partitions) and HW-access (NIC, IOC and Clock) can be realized through the
Adaptive-AUTOSAR (AP) framework.

3.1.1 Variable

In the FDF, Variables are defined as data structure to share information between parts of the
applications. This definition is in line with the element ‘field’ in the AP service interfaces.
Those fields may have further attributes such as a type, which might include a valid range,
initialization value, notification enable, setter and getter function enable.

The AP communication manager reads the field configurations from the application and
service manifests, creates the variable objects and writes the default or initialization values.
The E2E protection in the communication manager is responsible for deadline timeout
monitoring of the variables. Further, the communication manager coordinates with the IAM
(Identity and Access Manager) module regarding the access control decisions. The IAM
module decides the read and write access permissions to the variable objects based on the
service interface attributes in the manifest files.
The major difference between the FDF concepts and the AP is that in the AP fields are
stored in the providing service. Memory protection, which is defined in FDF’s
VariableManager, is usually left to the OS implementation, Platform health management and
the CPU’s diagnostic functionality. However, it is possible to implement a new service, which
in co-operation with the communication manager implements memory mirroring for instance.
This service could as well provide access to variable’s timestamp, which are also not part of
AP.

3 Inter Process Communication

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 25 of 59

3.1.2 Message

AP applications either provide or consume data in the form of fields as described in the
previous section. There is no differentiation between local and remote variables or
messages. This is because the AP communication manager abstracts and manages all
aspects of the communication. As for the FDF variables, the message definitions can be
mapped to the element ‘field’ in the service interfaces in the service manifest file.

3.1.3 Shared Memory

AP does not define the shared memory objects. As variables are stored within the providing
service, there is no need for this concept.

3.1.4 Function

3.1.4.1 Application Function

The application function implementation is framework independent and can be realized
easily. The variables for the input and output can be defined in the application/service
manifest files.

3.1.4.2 Service Function

AP offers many, but not all the FDF service functionalities. . For example, AP does not offer
the services for managing IO-driver operations. The missing services may be implemented
as adaptive services.

3.1.4.2.1 IO Function

IO handling is not in the scope of AP. The reason for this is that the AUTOSAR classic
platform contains a very mature specification of IO handling. The idea is that AP applications
interface to CP applications using SOME/IP to achieve IO access.

As FDF aims at a full integration of platform services to a single framework, this might not be
the way to go for the Safe4RAIL project. Nevertheless, it is possible to implement the IO
functionality, as it will be specified in the FDF as an additional service in the AP.

3.1.4.2.2 Time Function

AP provides the Time functionalities through the AP ‘Time synchronization’ module.

3.1.4.2.3 Message Function

The communication manager is responsible for the composition/decomposition of the
messages from/to variables.

3.1.4.2.4 Network Function

The service-manifest files describe the transport layer e.g. SOME/IP properties. Based on
the manifest files, the communication manager, signal-2-service mapping and network

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 26 of 59

management modules know that the message must be sent over the network using a given
transport layer and will take responsibility for the correct transmission.

3.1.4.2.5 Monitoring Function

Applications may provide notifications for variables, which other applications may subscribe
to. In case the value of the variable changes, the SOME/IP stack calls the notification
function.

3.1.4.2.6 Deployment Function

AP Execution Manager is responsible for the application deployment.

3.1.4.2.7 Log Function

AP implements the Log functionalities through the ‘Log and trace’ module. This module is
intended to provide logging capabilities to applications, so applications may decide which
information is to be stored in the logs.

3.1.5 Process

AP implements every framework module and the adaptive applications as processes.
Execution manager starts the processes.

3.1.6 Partition

The ‘Explanation of Adaptive Platform Design’ reads:

In summary, from the OS point of view, the AP and Adaptive Applications
(AP) forms just a set of processes, each containing one or multiple threads
– there are no difference among these processes, though it is up to the

implementation of AP to offer any sort of partitioning.

Therefore, the concept of partitioning is not a part of the AP. For the purpose of the FDF
instantiation, we propose the use of a hypervisor and virtual machines to provide spatial
separation of different applications of different SILs. A similar idea is already standardised
and used in safety-related-applications for avionics (ARINC 653) as well as for instance in in-
car infotainment systems (non-safety-related). Figure 19 depicts this approach.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 27 of 59

Figure 19 - Hypervisor architecture

This concept will complement the AP architecture with the concept of partitions, which are
implemented by independent virtual machines. Furthermore, the usage of a hypervisor will
provide an additional benefit: It enables deployment of other OSes on virtual machines on
the same physical machine, which might be for instance Linux or even classic AUTOSAR
applications.

3.1.7 Schedule

3.1.7.1 Partition Schedule

Partition scheduling is up to the hypervisor and thus implementation specific. Most available
hypervisor implementation support partition scheduling.

3.1.7.2 Process Schedule

Execution manager is responsible for starting applications and managing the application
lifecycle. Applications may use the OS interface to schedule their functions. The OS interface
must at least provide the following scheduling policies defined in the IEEE1003.1 POSIX
standard: SCHED_OTHER, SCHED_FIFO and SCHED_RR. Nevertheless, implementers
may decide to add additional policies like SCHED_DEADLINE in order to achieve real-time
requirements.

3.1.7.3 Function Schedule

A main application thread (runnable function) executes on every process execution.
Application is responsible to properly configure secondary threads (runnable functions). OS
can perform the thread level monitoring.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 28 of 59

3.2 Mapping structural design

The following sub-sections describe the mechanism how the FDF software components can
be realized through the AUTOSAR Adaptive Platform.

Figure 20 shows the architecture of AP. The Adaptive Applications (AA) run on top of ARA,
the AUTOSAR Runtime for Adaptive applications. ARA consists of application interfaces
provided by Functional Clusters, which belong to either Adaptive Platform Foundation or
Adaptive Platform Services. Adaptive Platform Foundation provides fundamental
functionalities of AP, and Adaptive Platform Services provide platform standard services of
AP. Any AA can also provide Services to other AA, illustrated as Non-platform service in the
figure.

Figure 20 - AP architecture logical view

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 29 of 59

Figure 21 shows the broad service categories available in the adaptive autosar.

Figure 21 - AP service categories

OS-Services include Execution manager and POSIX interface (PSE51). Platform services
include Diagnostics and Logging. Communication services include SOME/IP communication

3.2.1 Hardware Access Services

3.2.1.1 IODriverManager

The AP does not provide IO-driver functionalities. Additional adaptive services need to be
implemented which provide the IO-driver functionalities. Note that the applications may work
with the communication cluster service, which abstracts all kind of communications. The
communication manager works with the newly added services to provide the IO-driver
functionalities. As mentioned before it might be a possible solution to utilize classic
AUTOSAR applications connected via SOME/IP.

3.2.1.2 NICDriverManager

Network Management module is responsible for implementing the access to the network
interface.

3.2.1.3 WDGDriverManager

Platform Health Manager is responsible for implementing the WDG services.

3.2.1.4 ECUDriverManager

Platform Health Manager is responsible for monitoring ECU conditions.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 30 of 59

3.2.2 Operating System Services

3.2.2.1 FileManager

This module’s functionality is realized by AP’s persistency module.

3.2.2.2 MemoryManager

As stated above this module is not needed in the AP instantiation.

3.2.2.3 ConcurrencyManager

OS is responsible for the implementation of the concurrency manager functionality, which
includes management of threads, mutexes and semaphores.

3.2.2.4 TimeManager

Time synchronization module is responsible for the implementation of the clock manager
functionality, which includes getting and setting the system clock time.

3.2.2.5 SocketManager

AP communication manager may include the socket manager functionality, which is used for
the network message transmissions. Additionally, the socket manager may also be
implemented as an adaptive service. The communication manager may then use this newly
added service for the network message transmissions.

3.2.2.6 LibraryManager

Dynamic libraries are handled by the underlying operating system.

3.2.2.7 ExecutionManager

Execution management module is available in the AP. However its role is different from the
FDF execution manager. For example in FDF, the execution manager is responsible for the
partition and process schedule management. In AP, the execution manager is responsible
for configuring the OS based on the information in application and machine manifest files. In
AP, the hypervisor and OS are responsible for the partition and process schedule
management.

3.2.3 Functional Distribution Services

3.2.3.1 VariableManager

As stated above this module is not needed in the AP instantiation, as variables are stored in
the providing service (see 3.1.1).

3.2.3.2 MessageManager

In AP, the communication manager performs the activities, which are performed by the FDF
message manager. For example, the communication manager, together with the signal-2-

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 31 of 59

service mapping module, composes and decomposes the messages. The E2E module in the
communication manager is responsible for controlling the integrity of messages (e.g. CRC).

3.2.3.3 ConfigurationManager

Configuration manager cluster is available in AP. However, its role is rather to update the
software components, configuration and calibration data. In AP, the application manifest files
provide the configuration data for the clusters. The execution manager performs loading,
parsing and checking the coherency of the configurations.

3.2.3.4 NetworkManager

Communication manager performs the activity of the sending/receiving the messages from/to
message storage to/from network.

3.2.3.5 MonitoringManager

The E2E module in the communication manager performs the monitoring of the messages.
Communication manager coordinates with the access-control module in security manager
cluster for the access-control decisions. The access-control information in the application
manifest files servers as the basis for the access-control decisions.

3.2.3.6 IOManager

IO access is not in the scope of AP. Possible solutions have been mentioned in 3.1.4.2.1 and
3.2.1.1.

3.2.3.7 SynchronizationManager

AP Time synchronization module provides the Time and Synchronization management
functionalities

3.2.3.8 FunctionManager

The OS module handles scheduling in the AP. The Execution Manager is responsible for
application lifecycle management.

3.2.3.9 FrameworkManager

As there is no VariableStore or MessageStore in the AP, this functionality is not needed.
Functions are registered via Execution Management and OS modules.

3.2.3.10 HealthManager

The AP execution manager, in coordination with security cluster modules, performs the
activities related to integrity checks before their deployment. The execution manager also
reads the application and machine-manifest file information and applications configure the
OS. Note that the OS is primarily responsible of CPU time, memory budgeting as well as
partition and process monitoring.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 32 of 59

AP Platform-health-manager cluster performs the WDG and IO-hardware monitoring. The
cluster is also responsible for handling the reactions resulting from any anomaly.

3.2.3.11 LogManager

Log module in the AP manages the logging functionality. The applications create the logger
instances, initialize loggers and later initiate data logging. However, in AP the idea is that
applications actively provide messages to the log module. Therefore, to achieve the
functionality designed in the FDF an additional service, which monitors Variables and creates
corresponding log messages needs to be implemented.

3.2.3.12 TopologyManager

AP does not provide the service for topology management. The functionality however can be
implemented as an adaptive service.

3.2.3.13 RedundancyManager

AP does not provide redundancy management functionality. However, the functionality can
be implemented as an adaptive service.

3.2.3.14 DeploymentManager

Execution manager performs the deployment of the clusters and applications.

3.2.3.15 CryptoManager

Cryptographic functions are supplied by AP’s cryptography module.

3.2.3.16 UserAccountManager

The AP module “Identity and Access Management” is designed to provide access
management based on access control policies, which also include user/entitity management.

3.2.3.17 SecurityMonitoringManager

The Identity and Access management module together with the Platform Health Monitoring
module provide this functionality.

3.3 Summary and Conclusion of Adaptive AUTOSAR Instantiation

Although there are some conceptual differences between Adaptive AUTOSAR and the FDF,
the basic ideas and goals are similar. Both approaches try to simplify ECU development and
ECU cost by providing mechanisms to deploy mixed-criticality applications to a single host
while guaranteeing spatial isolation and interference-free execution.

Table 31 provides an overview, which elements of the FDF concept can be mapped to AP
elements and how.

Nevertheless, there are two major concerns, which need to be solved in the subsequent
works:

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 33 of 59

1. Evaluate how the FDF API can be mapped to the AP or rather how the AP API can
be wrapped into the FDF API: The concept of service-oriented communication used
in AP differs from the concept of a centralized repository for variables in the FDF (the
VariableManager and MessageManager modules). This issue needs to be addressed
as soon, as the application API is specified by CONNECTA.

2. The other uncertainty is that AP explicitly not defined to achieve hard real time
requirements due to the fact, that the service-oriented approach systemically adds
communication latencies. AP currently not specifies mechanisms to provide any real
time limitations to communication except for timeout detection. Nevertheless, it can
be assumed that COTS implementations will be able to guarantee maximum transfer
times. Furthermore, it is very likely that such requirements will be added in future AP
specification releases.

Element Mapping
available4

Restrictions Comments

Variable L Variables managed in
containing service, not in a
VariableManager

Message L Treated the same way as
variables.

Variable Memory N Not needed due to the
concept of service-oriented

communication

Variables are stored in the
containing/providing
service.

Message Memory N Not needed due to the
concept of service-oriented

communication

Application Function F Mapped to the AP element
‘executable’

Service Function F Mapped to the AP element
‘executable’

Process F POSIX processes are
used

Partition N/F AP needs to be combined
with a hypervisor to
achieve partitioning

Partition Schedule N/F Only in combination with a
hypervisor

Process Schedule L Applications are entitled to
control their scheduling
policy

Provided by the OS
module

4 N – Not available, P – Partially available, L – Largely available, F – Fully available

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 34 of 59

Element Mapping
available4

Restrictions Comments

Function Schedule L Applications are entitled to
control their scheduling
policy

Provided by the OS
module

FileManager F Provided by the
persistency module

MemoryManager N Not needed due to the
concept of service-oriented
communication

ConcurrencyManag
er

F Provided by the OS
module

TimeManager F Provided by the time
synchronization module

SocketManager F Provided by the Network
Management module and
the underlying OS

LibraryManager F Handled by the underlying
OS

ExecutionManager L/F Partitioning functionality
only available in
combination with a
hypervisor

Provided by the OS
module and the hypervisor

VariableManager N Not used by the AP due to
the concept of service-
oriented communication

MessageManager N Not used by the AP due to
the concept of service-
oriented communication

ConfigurationManag
er

F Provided by the execution
manager module

NetworkManager F Provided by the
communication manager
module

MonitoringManager L Variables can only be
monitored if they are
configured to provide
notification

Provided by the
communication manager
module

IOManager N IO handling is not in the
scope if AP.

Needs to be implemented
as non-platform service

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 35 of 59

Element Mapping
available4

Restrictions Comments

SynchronizationMan
ager

F Provided by the time
synchronization module

FunctionManager F Provided by the execution
manager and OS modules

HealthManager F Functionality distributed
among execution
manager, identity and
access manager, OS and
platform health
management modules

LogManager P AP Logging does not
provide logging of
variables/fields but logging
of arbitrary messages

Logging of variables/fields
could be implemented as a
non-platform service

TopologyManager N Needs to be implemented
as a non-platform service

RedundancyManag
er

N Needs to be implemented
as a non-platform service

DeploymentManage
r

F Provided by the execution
manager module

Table 31 - Summary of FDF design instantiation based on AUTOSAR

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 36 of 59

Chapter 4 FDF design instantiation based on

RTOS INTEGRITY

This design instantiation is based on a Real Time Operating System. After performing an
analysis on several RTOS and Hypervisors, result of which is included in Safe4RAIL
deliverable D2.2 [2], it was decided to use Integrity, a solution which has been already used
in railway industry, guarantees system resources for individual processes and supports
Asymmetrical Multiprocessing (AMP) and Symmetrical Multiprocessing (SMP) among other
functionalities. This RTOS is the Flagship OS of Green Hills Software®. It supports a wide
variety of Hardware platforms and APIs and is compliant to many different standards, such
as IEC 61508 SIL3 for industrial control systems, EN 50128 SW SIL 4 in Railway control or
DO-178B Level A, for Avionics software systems. In the so-called integration file, the
executable image is generated, which includes the RTOS and the applications altogether.

4.1 Mapping conceptual design

For this mapping, it is shown how each of the physical and logic elements is realized in our
design instantiation. This mapping will basically consist in the use of C++ Object Oriented
programming language and Integrity’s Integration File to generate the necessary
infrastructure. According to EN 50128 (table A.15), C or C++ textual programming language
is recommended to generate software code up to integrity level SIL4 [3].

4.1.1 Variable

This will be an instantiable class in C++ code. A constructor will be provided in which a set of
attributes will need to be given. Among these parameters, we can find identifier, type,
minimum size or maximum size.

4.1.2 Message

This will be an instantiable class in C++ code. A constructor will be provided in which a set of
attributes will need to be given. Among these parameters, we can find identifier, message,
set of Variables that compose it, length.

4.1.3 Shared Memory

Integrity’s Memory Region will be used. A Memory Region is a contiguous portion of the
addresses in an AddressSpace and it can be either Physical or Virtual. A physical
MemoryRegion represents the right and ability to access a range of actual physical memory
on the board whereas a virtual MemoryRegion represents the right and ability to map and
access a range of addresses in a virtual AddressSpace. A MemoryRegion is defined in the
Integrity Integration File as shown in Figure 22.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 37 of 59

Figure 22 - Example MemoryRegion

A name and a given size are given and then the necessary access rights must be given to
the processes or AddressSpaces, which will then in the code open, read or write in the
defined regions by the use of the API.

4.1.3.1 Variable Memory

This is a shared memory which will contain Variables, i.e., Variables will be mapped to this
concrete storage.

4.1.3.2 Message Memory

This is a shared memory which will contain Messages, i.e., Messages will be mapped to this
concrete storage.

4.1.4 Function

The functions are schedulable pieces of software that executes some logic and, thus, they
must be coded in this design instantiation.

4.1.4.1 Application Function

Application functions will be implemented in any language and they will implement the logic
of the application. They will be provided and instantiated by the user.

4.1.4.2 Service Function

On the other hand, service functions, i.e., those offered by the FDF, will be written in C++
language and must implement the IFunction Interface provided by the FunctionManager and
be registered inside this component to be executed.

4.1.5 Process

Processes are mapped to Integrity’s Address Spaces, which are defined as individual spaces
of memory addresses. Their execution can be sequential or concurrent. It will be sequential if
only a process or AddressSpace is defined pro Partition, which should not imply a big
additional computing cost since the only context switch is that between processes.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 38 of 59

Otherwise, i.e., if there is more than one process per Partition, this execution will be
concurrent. AddressSpaces look so in the Integrity integration File.

Figure 23 - Example AddressSpace

4.1.6 Partition

The partition needs to be understood as an execution environment with an isolated memory
address space and limited execution time. This means that we provide temporal and spatial
separation by the use of a partition. For our design instantiation, we will be making use of
Integrity’s element of the same name, i.e., Integrity Partition.

These partitions need to be defined in Integrity’s integration file and for each of them a set of
processes, or address spaces in Integrity, need to be defined as well as an execution time
within the major frame period of the partition scheduler and an execution offset or execution
slice.

4.1.7 Schedule

In Integrity the whole structure of the partitions and processes and the complete set of
shared resources is defined in ist Integration File. Here the Partition Schedules with their set
of Partitions and the list of processes running within each of these partitions are identified,
where each of the partitions have execution offsets and slices. By the use of this file a
Monolitic image is built, which contains the Operating System itself and all the set of
resources that have been defined in the file. Prior to this step each of the processes needs to
be created and compiled in order to create an .elf extension executable file, which is then
referenced in the Integration file and will run within an address space.

The execution of the partitions is always sequential in integrity. On the other hand, the
execution of processes can be squential if there is only one address space per partition or
concurrent otherwise. The execution of the list of functions within a process will always be
sequential.

4.1.7.1 Partition Schedule

The partitions need to be configured to specify the plan, sequence and time allocation for
their executions. That configuration is defined in partition schedules where, among others,
the period, priority, address spaces, offset and execution times may be defined for each
partition. Figure 24 shows a partition schedule example where the features mentioned before
are configured for two partitions.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 39 of 59

Figure 24 - Example Partition Schedule

4.1.7.2 Process Schedule

Processes belong to different process schedules shall also be configured using schedules.
Figure 25 shows a process schedule example where the address space, offset and
execution time for a process are specified.

Figure 25 - Example Process Schedule

4.1.7.3 Function Schedule

The execution of functions will always be sequential. The functions to be executed for every
process of each partition are registered in the FunctionManager which will hold the list of
Functions that it needs to execute. The FunctionManager will go through this list function by
function, so the execution of functions will always be sequential.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 40 of 59

4.2 Mapping structural design

This chapter explains how the different software components of the architecture are mapped
in this concrete design instantiation. As mentioned before, the FDF components are grouped
in three blocks: Functional Distribution Services (FDS), Hardware Access Services (HAS)
and Operating System Services (OSS). Since the first one needs to be portable across
different platforms, the FD Services block needs to be implemented and will interact with
other software components through the well-defined interfaces offered by the other two
blocks. Regarding the other two blocks the solution will be to create wrapper functions to
access services provided by the underlying Operating System, in the case of the OSS, and
the diverse set of drivers, in the case of the HAS.

4.2.1 Hardware Access Services

As mentioned, the idea is to create wrapper functions to access the underlying driver
functionalities for all the software components grouped in this block.

4.2.1.1 ECUDriverManager

This component provides services to access the ECU’s data. It allows getting the load and
the temperature of the ECU, which may be used to detect over/under temperature and
overloads.

Figure 26 - ECUDriverManager.

4.2.1.2 NICDriverManager

This component will consist in a wrapper function to access the DbD driver functionalities. It
will make use of two interfaces, one for every sort of traffic. On the one hand, IBEDriver will
be in charge of the Best Effort traffic and with it, messages will be sent and received. On the
other hand, IRTDriver is responsible for the Real-Time traffic and offers similar functions to
handle messages, apart from that to get the time.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 41 of 59

Figure 27 – NICDriverManager

4.2.1.3 IODriverManager

The FDF offers access to the IO through this component. It is a wrapper function, which
loads the corresponding drivers and encapsulates their functionalities to provide a set of
generic interfaces to the related components. Drivers for the most common IO devices are
provided: Analog Input, Analog Output, Digital Input and Digital Output. By the use of these
interfaces the value of the device is updated or retrieved.

Figure 28 – IODriverManager

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 42 of 59

4.2.1.4 IWDDriverManager

This manager is responsible for handling the Watchdog. In the case of this RTOS based
instantiation, PowerPC’s watchdog will be used, so this wrapper function load this concrete
driver’s logic and provides the IWDDriver functionality so that HealthManager component can
refresh the Watchdog.

Figure 29 – WDDriverManager

4.2.2 Operating System Services

For this block of components, the interfaces are based in POSIX, so the calls are well-
known. Besides, as it happens with the HAS, wrapper functions will be developed to access
the underlying OS services.

4.2.2.1 MemoryManager

This Manager is responsible for taking care of accessing the shared memories safely. Its
only interface provides the shm_open() function to create or open a previously created
shared memory and mmap() maps a shared memory location to a given object.

Figure 30 – MemoryManager

4.2.2.2 ExecutionManager

This is Integrity’s Partition Scheduler. This partition scheduler fulfils all the functionalities that
are expected from the ExecutionManager. It grants the computing resources to the selected
partition and executes the process when it is meant safely, offering temporal and spatial
separation. This components offers an operation to change the schedule.

Figure 31 - ExecutionManager.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 43 of 59

4.2.2.3 TimeManager

This manager handles the update of the system clock when the global clock comes from the
network and provides timers for general use. It offers two interfaces: with IClock the system
clock and the resolution can be consulted and the system clock set. On the other hand, with
ITimer we create and manage timers.

Figure 32 – TimeManager

4.2.2.4 ConcurrencyManager

With ConcurrencyManager semaphores and mutexes can be managed. This manager offers
two different interfaces for this task: ISemaphore and IMutex.

Figure 33 – ConcurrencyManager

4.2.2.5 SocketManager

This manager offers all regular socket functionalities. By the use of its unique interface
sockets can be bond, connected or listened, for instance.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 44 of 59

Figure 34 – SocketManager

4.2.2.6 FileManager

IFile interface of this manager offers typical functions to access the file system, i.e., open,
read, write and close, and remove paths. It is the only OS Manager with Standard C based
functions in its interface.

Figure 35 – FileManager

4.2.2.7 LibraryManager

ILibraryManager provides services to handle dynamic libraries (DLL), including open and
close libraries and handle errors.

Figure 36 - LibraryManager.

4.3 Summary and Conclusion of Integrity-based Instantiation

In Table 32, the summary of the FDF design instantiation report based on INTEGRITY is provided.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 45 of 59

Element Mapping
available5

Restrictions Comments

Variable L - It is an instantiable Class. In the
Constructor parameters such as
type and identifier given.

Message L - It is an instantiable Class. In the
Constructor parameters such as
identifier and set of variables that
compose it are given.

Variable Memory L - Shared Memories are Integrity’s
Memory Region. Need to define
data structure of variables

Message Memory L Shared Memories are Integrity’s
Memory Region. Need to define
data structure of messages.

Application Function F - It will be C++ code. Must
implement IFunction Interface in
order to be executed.

Service Function F - It will be C++ code. Must
implement IFunction Interface in
order to be executed.

Process F - It is a .elf extension binary file
which is attached to an Integrity’s
address space.

Partition F - Integrity’s Partition.

Partition Schedule F - Integrity’s Integration File. More
than one ParitionSchedule can be
present. Please refer to chapter
4.1.7 for further information.

Process Schedule F The set of processes running
within a partition are provided in
the Integrity Integration File.

Function Schedule F This is the list of functions running
within an .elf binary file.

FileManager P - Standard C library provided by the
RTOS. A wrapper needs to be
implemented to get to SIL4.

5 N – Not available, P – Partially available, L – Largely available, F – Fully available

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 46 of 59

Element Mapping
available5

Restrictions Comments

MemoryManager P - POSIX API provided by the RTOS.
A wrapper needs to be
implemented to get to SIL4.

ConcurrencyManag
er

P - POSIX API provided by the RTOS.
A wrapper needs to be
implemented to get to SIL4.

TimeManager P - POSIX API provided by the RTOS.
A wrapper needs to be
implemented to get to SIL4.

SocketManager P - POSIX API provided by the RTOS.
A wrapper needs to be
implemented to get to SIL4.

LibraryManager P - POSIX API provided by the RTOS.
A wrapper needs to be
implemented to get to SIL4.

ExecutionManager F - Integrity’s Enhanced Partition
Scheduler. Provides all
functionalities expected from the
execution manager. It does not
offer any interface, since it is not
called by any of the other
components.

Table 32 – Summary of FDF design instantiation based on INTEGRITY

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 47 of 59

Chapter 5 FDF design instantiation based on

Hypervisor PikeOS

In order to map the FDF design into the PikeOS paradigm, the basic architecture of PikeOS
is shown in Figure 37.

Figure 37 - PikeOS System Architecture

In the PikeOS architecture, the microkernel consists of the Architecture Support Packet
(ASP) that depends on the CPU architecture and the platform dependent part called Platform
Support Package (PSP). The microkernel is linked with the Kernel Level Drivers to build up
the kernel, which runs with supervisor privileges.

The PikeOS System Software (PSSW) contains majorly the built in system extensions and is
also responsible for reading the configuration file to initialize the partitions, channels between
partitions and health monitoring tables.

The hosted user partitions are resource partitions according to the PikeOS paradigm. Normal
applications and system services could be implemented as partitions which make usage of
the services provided by either the PSSW or the PikeOS kernel.

PikeOS implements para-virtualization and the microkernel serves as a Virtual Machine
Monitor (VMM) to trap attempts of the user applications to execute privileged instructions or
to access system resources not assigned to them.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 48 of 59

5.1 Mapping conceptual design

In this section, we will analyse the existing FDF conceptual design and try to map each
component to the services provided by PikeOS.

5.1.1 Variable

The variable is the defined data structure to share information between processes. The
configuration of a variable includes identifier, type, range, default value and deadline. The
fields of a variable are defined to contain the value, timestamp and validity flag.

Within PikeOS paradigm, there exists the so-called “Inter Process Communication (IPC)”
mechanism which is the primary thread communication mechanism. IPC is designed to copy
or map a data from a sending thread’s address space to a receiving thread’s address space.
However, IPC is a synchronous and unbuffered method with support of a timeout parameter
that specifies the maximum time a sending thread can wait. Through IPC there can be only
one receiver and multicast or broadcast are not available. In this case, IPC is not capable to
achieve the functionality of the defined variable.

Another mechanism defined in PikeOS for inter process communication is the Event, which
is the only asynchronous thread communication in PikeOS as well as the fastest
communication service within PikeOS kernel. However, for a receiving thread, it cannot
determine which thread has signalled an event, when multiple threads are enabled to signal
an event. The defined event in PikeOS maps not well for the variable.

The existing defined inter process communication mechanisms in PikeOS cannot be directly
used as the variable in the FDF, a data structure in C/C++ language needs to be defined
based on the necessary fields of a variable.

5.1.2 Message

The message is the defined data structure to share variables between partitions residing on
different computing nodes. The configuration of a message should contain the identifier of
the message, the identifier of the contained variables, indicator of communication direction
(e.g., to be send or received), time point of sending or receiving and deadline.

Basically, PikeOS provides the message based communication through static channels
which link two ports, i.e. source and destination port. A port can be a sampling port or a
queuing port. The system integrator can configure the refresh rate of a message residing in a
sampling port, in order to guarantee the validity of a message. Since the defined channel is
statically configured before booting the system, it is not directly capable to deal with the train
inauguration in the TCMS FDF context. The dynamic behaviour of train inauguration needs
to be instantiated on a higher level.

5.1.3 Shared Memory

The shared memory is defined as the memory space that can be simultaneously accessed
by processes. And the accessing right of different processes should be configurable.

From the viewpoint of PikeOS, it also provides shared memory objects which can be
accessed by different partitions within the same computing node. The shared memory
objects are created at boot time and accessible during run time. A shared memory object is
treated as a file in the file system name space of a file provider called SHM, which enables a

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 49 of 59

shared memory object to be accessible through the PikeOS file system API. The accessing
permissions of a shared memory object can be configured in the partition’s file access list.

5.1.3.1 Variable Memory

As aforementioned, a shared memory object needs to be compatible to store the defined
variables and access the variable with the variable identifier.

5.1.3.2 Message Memory

As aforementioned, a shared memory object needs to be compatible to store the defined
messages and access a message with the variable identifier.

5.1.4 Function

Function is defined in the FDF concept as the schedulable software unit which processes
data in variables or messages. A function can be categorised into application function and
service function that are provided and instantiated by the users or the FDF.

In PikeOS system, a thread is the schedulable entity, which is identified by a thread ID. A
thread ID is unique within a process/task. Addressing threads residing in different tasks will
need to combine the task ID and the thread ID, in order to generate a system wide unique ID.

5.1.4.1 Application Function

Since an application function implements the user defined logic, the application functions
could be implemented within a normal resource partition in the PikeOS paradigm. A resource
partition defines the system resources that the functions within it can exclusively use and
functions residing in other resource partitions cannot access them.

5.1.4.2 Service Function

The service functions are designed to provide the FDF services for the application functions.
In the design of PikeOS system, it uses the time partitioning mechanism to allocate CPU time
among resource partitions in a fixed cyclic way. Moreover, PikeOS also introduces a
background time partition, which is active during runtime and contains threads of both high
priority (e.g., error handler) and low priority. This background time partition is designed for
the safety critical threads to pre-empt other threads and for the non-safety critical threads to
consume the idle CPU time of all the time partitions. Based on this design, the service
functions could be developed and assigned to the background time partition.

5.1.5 Process

A process in the FDF concept consists of threads and owns isolated address space to other
processes. A process needs to be configured with the scheduling plans of the functions
during runtime. For accessing a shared memory, only one dedicated process is allowed to
have write access, and other processes could only have read access.

From the PikeOS point of view, more than one PikeOS task can be started within one
resource partition and each task has its own virtual address space and memory. All the tasks
within one resource partition also share the system resources which belong to this resource
partition and not assigned to specific tasks. A task is configured with the Maximum

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 50 of 59

Controlled Priority (MCP) which is used for the PikeOS priority-based scheduling. The
access control of a shared memory in PikeOS is in the granularity of resource partition
instead of process/task. It would be necessary to implement the access control in the shared
memory manager.

5.1.6 Partition

The partition is defined to be the process execution environment with temporal and spatial
isolation to other partitions. A process in the FDF can belong to different partitions and the
scheduling plan of the processes in one partition is configurable.

In the PikeOS paradigm, the above defined partition is a combination of time partition and
resource partition in a PikeOS system. The resource partition in PikeOS defines the system
resources that the processes within it can exclusively use and processes residing in other
resource partitions cannot access them. This concept contributes to the defined spatial
isolation between partitions. In another case, time partitioning in PikeOS defines the
mechanism to allocate CPU time amongst resource partitions. The mapping between
resource partitions, time partitions and CPU time windows is shown in Figure 38. It is also
possible that different threads in the same resource partition belong to different time
partitions. A task/process in PikeOS is able to change a thread’s time partition during
runtime. When a process/task needs to belong to different partitions, i.e. the threads of a
process/task belong to different partitions, the synchronization mechanisms between threads
provided by PikeOS like mutexes, conditional variables, semaphores, etc. need to be used
for the thread synchronization.

Figure 38 - Mapping between partitions and CPU time windows

5.1.7 Schedule

5.1.7.1 Partition Schedule

In the FDF concept design, a partition schedule represents for a scheduling plan of partitions.
And a partition can also belong to different partition schedule. During runtime there is only
one active partition schedule and the other partition schedules are standby to be loaded.

During the integration of a PikeOS project, the system integrator can define multiple
scheduling schemes and switching between pre-defined time partitioning schemes is feasible
during runtime.

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 51 of 59

5.1.7.2 Process Schedule

The process schedule is defined as the scheduling plan of the processes and one process
can belong to different process schedules. However, in a PikeOS system, it is possible to
indirectly schedule the processes through defining the priority of a process, because the
scheduler of PikeOS dispatches threads based on their priorities. Switching between
different process schedules is impossible due to the unchangeable process priorities.

5.1.7.3 Function Schedule

The function schedule is similar to the process above and the implementation in PikeOS
system is different, because the priority and time partition of a thread can be changed during
runtime. Changing the thread priority can indirectly changing the schedule of threads. But
there is no defined PikeOS APIs to switch directly between pre-defined thread scheduling
plans. One thread scheduling plan could be mapped to one setup of the threads’ priorities
that makes it possible to define different threads’ priority setups and switch between them.

5.2 Mapping structural design

The FDF structural design consists majorly of the grouped services in the FDF architecture.
In this section, we will analyse the ones related to the services provided by PikeOS and
provide the detail report on how to implement these components based on the PikeOS
services.

5.2.1 Hardware Access Services

The hardware access services depend on the target hardware. For specific hardware like I/O
devices, NIC card and watchdog devices, the implementation of the hardware access
services could be achieved through Kernel Level Device Drivers, drivers in PSSW layer or as
a system partition. The pros and cons of these options are discussed as follows.

In terms of configuration, the system extensions and user partition can access the PikeOS
property file system to retrieve their configuration data, while a kernel driver could only be
configured by binary configuration which is compiled from dedicated XML files. Accessing the
property file system is flexible with the cost of increased system overhead. For the
operational requests (e.g., read, write…), the drivers implemented as a user partition or a
system extension involve address space switches from the requesting applications to the
drivers that results in the longer turn-around times comparing to the kernel drivers which
require no address or thread switch according to the PikeOS thread model. From the view
point of address space separation, a driver implemented as a user partition only needs to at
the highest criticality of the other partitions that access the drivers. For a system extension or
a kernel driver, they always need to have the highest criticality level in the whole system. The
interrupts occurring in the system are routed to a user partition or a system extension by
blocking that requires address space and thread switching, while a kernel driver provides
pre-defined call backs for interrupts with limited operation like data transfer. As
aforementioned, address space switch and thread switch come with extra system overhead.
For accessing to system resources except interrupts, a user partition or system extension
has more restrictions than a kernel driver (e.g., accessing high resolution timers). Based on
the PikeOS thread model, blocking is easier to be achieved in a user partition or a kernel
driver than in a system extension due to the non-blocking property of a partition daemon in
the PSSW layer. The last point is that a user partition and system extension can start new

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 52 of 59

worker threads when necessary, while a kernel driver runs in the thread context of the calling
application.

5.2.2 Operating System Services

5.2.2.1 FileManager

The PikeOS file system provides a uniform way to access various types of files and the
PSSW module contains a file system layer to dispatch calls to different file providers.
Moreover, PikeOS also provides volume providers to have complex hierarchical file systems
that are capable for dynamic creating of files and directories. Since the defined FileManager
provides interfaces to read and write files, it is necessary to define wrapper functions to
convert these interfaces into the PikeOS file system APIs.

The major file system APIs are as follows.

 vm_open () / vm_open_at (): to open a file

 vm_read () / vm_read_at (): to read from a file

 vm_write () / vm_write_at (): to write into a file

 vm_close (): to close a file

 vm_map () / vm_map_to (): to map a file into the caller’s address space

 vm_ioctl (): file provider specific control function

These are the major APIs to be used in the implementation. The other functions link file controlling are
not listed here.

5.2.2.2 MemoryManager

Since the shared memory objects in PikeOS is treated as a file in the file system name space
of a file provider called SHM, which enables a shared memory object to be accessible
through the PikeOS file system API. For reading and writing a variable or a message in a file,
an extra data structure needs to be defined, in order to record the offset of a variable or
message from the beginning of the shared memory. The reason is that the file system in
PikeOS does not provide any index functions.

For memory management, PikeOS provides the following APIs for the applications:

 vm_mem_lookup (): to retrieve the memory descriptor when given a name

 vm_mem_pool_alloc (): the caller can allocate memory from a partition’s memory
pool

 vm_mem_stat (): used to retrieve information about a memory object’s status

5.2.2.3 ConcurrencyManager

In the PikeOS system, the synchronization between threads can be achieved by the provided
services like mutexes, semaphores, etc. In order to implement the ConcurrencyManager, it is
necessary to develop the necessary wrapper functions using the provided PikeOS kernel
APIs. Another point is to implement a store to keep the mapping between
mutexes/semaphores with the owner threads.

For mutexes, the provided APIs of the PikeOS is listed as followed.

 p4_mutex_init (): to initialize a mutex

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 53 of 59

 p4_mutex_owned (): to test the mutex lock owner

 p4_mutex_lock () / p4_mutex_trylock (): used to lock a mutex

 p4_mutex_unlock (): to unlock a mutex

Similarly, the APIs for semaphores are as following:

 p4_sem_init (): to initialize a semaphore

 p4_sem_value (): to get the counter value of a semaphore

 p4_sem_ wait () / p4_sem_ try_wait (): to lock a semaphore

 p4_sem_ post (): to unlock a semaphore

5.2.2.4 TimeManager

The defined TimeManager needs to be able to get and set the time of the system clock.
However, PikeOS kernel provides a logical time base for system time and timeouts. The
system time value records the elapsed time since the system starts up. PikeOS provides only
the API to get the system clock.

The APIs regarding timeouts in PikeOS kernel are as following:

 p4_sleep (): for a thread to delay for an amount of time

 p4_get_time_syscall () / p4_get_time (): to get the system time since boot in
nanoseconds

 p4_get_ts_syscall () / p4_get_ts (): to read the CPU time stamp counter

5.2.2.5 ExecutionManager

The defined ExecutionManager needs to guarantee isolation between partitions and execute
partitions and processes according to the corresponding partition/process schedule.

In PikeOS, it is feasible to define the scheduling plans of partitions for the scheduler residing
in the PikeOS kernel. In this case, it is possible to control the kernel to switch between pre-
defined schedule schemes of partitions. For the process execution, there is no possibility to
directly define the process schedules for the PikeOS kernel scheduler. But one feasible way
is to define the plan for changing the threads’ priority which leads to the changing of process
execution, because within a partition, the threads are priority based scheduled.

For switching between different time partition scheduling plans, the PSSW provides the
following APIs:

 vm_tsched_lookup (): to lookup the scheduling plan id by its name

 vm_tsched_stat (): to retrieve the time partition scheduling status of a CPU

 vm_tsched_change (): to change the time partition plan to another specified one

In order to change the priority of a thread, the PikeOS kernel provides the following APIs:

 p4_thread_get_sched (): to retrieve the thread priority and time partition

 p4_thread_set_sched (): to set the thread priority and time partition

 p4_thread_set_priority (): to set the priority of a thread

 p4_thread_get_priority (): to retrieve the priority of a thread

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 54 of 59

5.2.2.6 SocketManager

In the PikeOS system, the PikeOS native personality supports the ANIS/CIP that is a
certifiable UDP/IP stack. In case that TCP/IP stack is necessary, the LwIP that comes with
the PikeOS POSIX personality could also be used.

5.2.2.7 LibraryManager

The LibraryManager provides the services to handle operations (e.g., open, close, etc.) on
dynamic libraries. However, in the native PikeOS system, there is no pre-defined system
services of dynamic libraries. Since PikeOS provides POSIX personality and dynamic linking
is provided as one of the standard POSIX header files, it is feasible to implement the
LibraryManager leveraging the POSIX personality.

5.3 Summary and Conclusion of Hypervisor-based Instantiation

In Table 33, the summary of the FDF design instantiation report based on PikeOS is provided. Since
the details regarding the Hardware Access Services are tightly related to the hardware platform, the
report of driver instantiation options is provided in section 5.2.1.

Element Mapping
available6

Restrictions Comments

Variable P
Unbuffered synchronized
unicast

IPC and Event need to
have higher level logic,
better use shared memory

Message P
Static port based
channel

Better to use shared
memory and implement
memory manager

Variable Memory L -
Need to define data
structure of a variable and
implement the manager

Message Memory L -
Need to define data
structure of a message and
implement the manager

Application Function F -
Thread priorities affect the
scheduling

Service Function L -

Either implemented in a
service partition or defined
as libraries for the
applications

Process L
Shared memory access
control in the granularity
of partition

Need to control the shared
memory access at the
process level

6 N – Not available, P – Partially available, L – Largely available, F – Fully available

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 55 of 59

Element Mapping
available6

Restrictions Comments

Partition F -
Combination of time
partition and resource
partition

Partition Schedule L
Only possible to switch
between pre-defined
scheduling scheme

-

Process Schedule L
Impossible to switch
between schedule plans

Changing the process
priority can implicitly
change the schedule plan

Function Schedule L
No direct way to change
the thread schedule

Modifying a thread’s priority
is possible during runtime

FileManager L
Extra file index needs to
be maintained

Either use native APIs or
POSIX APIs

MemoryManager L
Extra index needs to be
maintained

Either use native APIs or
POSIX APIs

ConcurrencyManager L

Mapping between
synchronization objects
and threads need to be
maintained

Either use native APIs or
POSIX APIs

TimeManager P
No API for direct setting
the system clock

Time partitions need to be
synchronized

ExecutionManager L -
The resource partition
defines the spatial isolation.

SocketManager L
PikeOS native
personality only support
UDP/IP stack

PikeOS POSIX personality
supports UDP/IP and
TCP/IP

LibraryManager P
PikeOS native
personality does not
support dynamic linking

Implementation based on
PikeOS POSIX personality

Table 33 – Summary of FDF design instantiation based on PikeOS

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 56 of 59

Chapter 6 Summary and conclusion

The present document evaluates three different design instantiations of the Functional
Distribution Framework for next generation TCMSs. Those different approaches cover a
variety of initial situations:

Coming from the application side, the PikeOS hypervisor together with PikeOS native API
mainly provide an interface to a virtual machine. Thus, implementing the FDF on top of this
solution will probably requires the most implementation work but provide the highest level of
freedom and consequently enables implementers to stay as close as possible to the initial
design and requirements.

INTEGRITY, on the other hand, is a POSIX compliant Real-time operating system built with
partitioning support and aiming at applications that require high RAMS7 requirements. In
terms of implementation effort for the FDF instantiation, this solution is probably less complex
than the PikeOS approach, as multiple FDF service functionalities are already covered by the
INTEGRITY RTOS and need to be wrapped.

However, it should be mentioned that both approaches would require the implementation of
the Functional Distribution Services on top of Hardware and OS Abstraction layers. By using
defined APIs for the latter portability between different hardware platforms is enabled.

The AUTOSAR Adaptive platform in contrast provides its own set of services and APIs to
applications. The result of the analysis is that AP modules cover most of the FDF’s
functionality, although there are some conceptual differences and missing features. One
major issue is the fact that AP does not provide a partitioning concept. This however can be
solved by combining the hypervisor approach (e.g. by using PikeOS Hypervisor) with AP in
such a manner that multiple AP instances run in different PikeOS partitions and thus
guarantee freedom of interference. It is to be evaluated in subsequent work, if and how the
AP application API can be wrapped to be able to run FDF applications.

In conclusion, all three approaches seem to be viable to provide a basis for next generation
TCMSs. PikeOS and INTEGRITY are proven and tested in lots of ECUs in various safety-
related applications. AP on the other hand is still in development and aims specifically at the
automotive domain, omitting some railway-relevant features and leaving open questions,
when it comes to certification as both domains take different approaches and railway
applications usually require a higher safety level.

During subsequent work in Safe4RAIL, proof-of-concept implementations based on the three
platforms analysed here will be performed. Corresponding reports will provide further details,
while the outcome of D2.68 will contain detailed comparison of the different approaches.

7 Reliability, Availability, Maintainability, Safety

8 This deliverable is confidential

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 57 of 59

Chapter 7 List of Abbreviations

AA Adaptive Application

AMP Asymmetrical Multiprocessing

AP Adaptive Platform

API Application Program Interface

ARA AUTOSAR Runtime for Adaptive Applications

ASP Architecture Support Package

AUTOSAR Automotive Open System Architecture

CP Classic Platform

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DbD Drive-by-Data

ECU Electronic Control Unit

FDF Functional Distribution Framework

FDS Functional Distribution Services

HAS Hardware Access Services

IO Input Output

IOC IO Controller

IP Internet Protocol

IPC Inter Process Communication

NIC Network Interface Controller

OEM Original Equipment Manufacture

OS Operating System

OSS Operating System Services

POSIX Portable Operating System Interface for UNIX

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 58 of 59

PSP Platform Support Package

PSSW PikeOS System Software

RTOS Real Time Operating System

Safe4RAIL Safe architecture for Robust distributed Application Integration in
roLling stock

SIL Safety Integrity Level

SMP Symmetrical Multiprocessing

SoC Service-oriented Communication

SOME/IP Scalable service-Oriented MiddlewarE over IP

TCMS Train Control and Monitoring System

TTDB Train Topology Database

WDG Watch Dog

Table 34: List of Abbreviations

D2.4 – Report on TCMS framework instantiation

Safe4RAIL D2.4 Page 59 of 59

Chapter 8 Bibliography

[1] „D2.2 Report on analysis of ‘functional distribution architecture’ frameworks and
solutions,“ Safe4RAIL project, 2016.

[2] „D2.3 Report on ‘TCMS framework concept’ design, security concepts, and assessment,“
Safe4RAIL prokect, 2016.

