
D2.3
Report on ‘TCMS framework concept’ design,

security concepts and assessment
Project number: 730830
Project acronym: Safe4RAIL

Project title: Safe4RAIL: SAFE architecture for Robust
distributed Application Integration in rolling stock

Start date of the project: 1st of October, 2016

Duration: 24 months

Programme: H2020-S2RJU-OC-2016-01-2

Deliverable type: Report

Deliverable reference number: ICT-730830 / D2.3 / 1.2

Work package WP2

Due date: March 2018 – M18

Actual submission date: 30th of March, 2018

Responsible organisation: IKL

Editor: Iñigo Odriozola

Dissemination level: Public

Revision: 1.2

Abstract:
This report describes the TCMS Framework
concept design with safety and security
considerations and the assessment.

Keywords: TCMS Functional Distribution Framework,
Architecture, Safety Concept, Security Concept

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
730830.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page II

Editor
Iñigo Odriozola (IKL)

Contributors (ordered according to beneficiary numbers)

Iñigo Odriozola, Ekain Azketa, Asier Larrucea (IKL)
Bernd Löhr, Iris Bosse (NEW)
Rosa Iglesias, Aitor Uribarren, José Luis Flores (IKL)
Stefano La Rovere (NIER)
Bernhard Nölte, Alexander Piechullek-Königer (TÜV)

Disclaimer
The information in this document is provided “as is”, and no guarantee or warranty is given that
the information is fit for any particular purpose. The content of this document reflects only the
author’s view – the Joint Undertaking is not responsible for any use that may be made of the
information it contains. The users use the information at their sole risk and liability.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page III

Executive Summary
The main task of WP2 of Safe4RAIL is to provide the “Functional Distribution” architecture
concept for a mixed criticality embedded platform, offering an execution environment for
multiple Train Control and Monitoring System (TCMS) application functions with a virtual bus
inside the end-system.
In this context, task 2.4 and the resulting present deliverable targets the design of a high level
‘functional distribution architecture’ framework concept that could be potentially instantiated on
different available frameworks and COTS solutions. This reference framework concept should
consider functional distribution among devices distributed along the vehicle, service
negotiation/plug and play (e.g. for functional open coupling), mixed-criticality (integration of
functions with different criticality), railway certification standards, railway domain product life-
cycle, hardware abstraction, abstract communication services, security and railway domain-
specific requirements.
This framework is completed by a systematic assessment of deviations from the nominal
behaviour of the implemented functions and of threats to data communication, producing a list
of hazards, mitigated by a set of safety and security requirements to be met in the
implementation of the proposed architecture. The associated ‘safety concept’ and ‘security
concept’ have been assessed with respect to railway functional safety and security by a
certification authority.
This deliverable gathers the result of a design process in form of a reference architecture for
the Functional Distribution Framework. This architecture is described in terms of its conceptual
view, the set of components that is made of its structural view, and the phases to be undergone
in order to make it work. The steps followed to realize a Safety Concept and a Security Concept
of this architecture are detailed, before completing the deliverable with their assessment. This
assessment focuses on the requirements and expectations on the FDF design to support
safety and security aspects and concludes with a set of appraisals.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page IV

Contents

Executive Summary ... 3

Contents .. 4

List of Figures ... 8

List of Tables .. 10

Chapter 1 Introduction ... 1

1.1 About this document .. 1

1.2 Functional Distribution Framework Concept .. 1

1.2.1 Motivation .. 1

1.2.2 High-level requirements ... 2

1.2.2.1 Technical Requirements ... 3
1.2.2.2 Non-technical characteristics .. 5

1.2.3 Integrated Modular Platform Concept ... 6

Chapter 2 Design concept ... 7

2.1 Introduction .. 7

2.2 Conceptual view... 7

2.2.1 Elements .. 7

2.2.1.1 Variable .. 7
2.2.1.2 Message .. 7
2.2.1.3 SharedMemory ... 7
2.2.1.4 Function ... 7
2.2.1.5 Process .. 8
2.2.1.6 Partition .. 8
2.2.1.7 Schedule .. 8

2.2.2 Mapping of elements .. 8

2.3 Structural view – software components ... 9

2.3.1 Hardware Access Services ...10

2.3.1.1 IODriverManager ...10
2.3.1.2 NICDriverManager ..10
2.3.1.3 WDDriverManager ...11
2.3.1.4 ECUDriverManager ...11

2.3.2 Operating System Services ...11

2.3.2.1 FileManager ..11
2.3.2.2 MemoryManager ...11
2.3.2.3 ConcurrencyManager ..11
2.3.2.4 TimeManager ..11
2.3.2.5 SocketManager ...12

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page V

2.3.2.6 LibraryManager ...12
2.3.2.7 ExecutionManager ..12

2.3.3 Functional Distribution Services ..12

2.3.3.1 VariableManager ...12
2.3.3.2 MessageManager..13
2.3.3.3 ConfigurationManager ...13
2.3.3.4 NetworkManager ...14
2.3.3.5 MonitoringManager ...14
2.3.3.6 IOManager ..14
2.3.3.7 SynchronizationManager ...16
2.3.3.8 FunctionManager ..16
2.3.3.9 FrameworkManager ..16
2.3.3.10 HealthManager ..17
2.3.3.11 LogManager ..18
2.3.3.12 TopologyManager ...19
2.3.3.13 Redundancy Manager ...19
2.3.3.14 DeploymentManager ...19
2.3.3.15 CryptoManager ...20
2.3.3.16 UserAccountManager ..21
2.3.3.17 SecurityMonitoringManager ...21

2.3.4 FDF Detailed structural view ...24

2.4 Behavioural view .. 26

2.4.1 Configuration phase ..26

2.4.2 Initialization phase ..27

2.4.2.1 Driver initialisation ...28
2.4.2.2 Data initialisation ...30
2.4.2.3 Function initialisation ...33

2.4.3 Execution phase ...42

2.4.3.1 Data monitoring ...44
2.4.3.2 Data distribution ..44
2.4.3.3 Global synchronisation ..47
2.4.3.4 Watchdog refreshing ...48
2.4.3.5 Input reading ...48
2.4.3.6 Output writing ..49
2.4.3.7 Redundancy management ..51
2.4.3.8 Data logging ..52
2.4.3.9 Data user function execution ...53
2.4.3.10 Data topology discovery ..54
2.4.3.11 Deadline checking ...54
2.4.3.12 Disable execution ..55
2.4.3.13 Load checking ...55
2.4.3.14 Output checking ..55
2.4.3.15 Temperature checking ...56

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page VI

2.4.3.16 Reset platform ...56
2.4.3.17 Executable and configuration deployment ...57

Chapter 3 Safety concept ... 58

3.1 FDF Functional model .. 58

3.2 FDF PHA Methodology .. 60

3.3 FDF PHA Results ... 61

3.3.1 System Hazards ..62

3.3.2 Countermeasures ...65

3.3.3 Application conditions ...72

3.3.4 Recommendations ..73

3.3.5 CONNECTA functional requirements mapping ..74

Chapter 4 Security concept ... 76

4.1 Introduction .. 76

4.2 Motivation .. 76

4.3 Scope ... 77

4.4 Objective .. 78

4.5 Risk analysis – Security objectives .. 79

4.5.1 FDF brief description ...79

4.5.2 Security dimensions or attributes ..80

4.5.3 System assets ...81

4.5.4 Use case: Bogie Monitoring System ..81

4.5.4.1 General Description ...82
4.5.4.2 Operational Description ...82
4.5.4.3 Assets Used ..83
4.5.4.4 Possible Threats/Attacks ...83

4.5.5 Security objectives ..86

4.6 Security requirements .. 87

4.7 Risk assessment .. 89

4.7.1 Security Level Target ..90

4.7.2 Determination of the severity of the risk ..91

4.8 Security countermeasures ... 92

4.8.1 Countermeasure 1: Trusted Platform Module (TPM) ...92

4.8.2 Countermeasure 2: Password policy ...93

4.8.3 Countermeasure 3: User profiles and application profiles policies94

4.8.4 Countermeasure 4: Role-based access control (RBAC) ..95

4.8.5 Countermeasure 5: Encryption ..95

4.8.6 Countermeasure 6: Session bindings ..96

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page VII

4.8.7 Countermeasure 7: Network limited bandwidth ...96

4.8.8 Countermeasure 8: Asset inventory ..97

4.8.9 Countermeasure 9: Software-based memory protection unit97

4.9 Functional Security Assessment Requirements ... 97

4.10 Conclusions and next steps.. 100

Chapter 5 Assessment of the safety and security concepts 101

5.1 Requirements given to the FDF design .. 101

5.1.1 General ... 101

5.1.2 Safety ... 102

5.1.3 Security ... 102

5.2 Assessment of the safety concept ... 103

5.2.1 Requirements.. 103

5.2.2 Approach and findings .. 103

5.2.3 Appraisal ... 104

5.3 Assessment of the security concept ... 104

5.3.1 Requirements.. 104

5.3.2 Approach and findings .. 104

5.3.3 Appraisal ... 105

Chapter 6 Integration of the Framework in the IMP 106

Chapter 7 Summary and conclusion ... 107

Chapter 8 List of Abbreviations .. 109

Chapter 9 Bibliography .. 112

ANNEX A: FDF Process Hazard Analysis ... 114

ANNEX B: Functional Security Assessment Requirements table 121

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page VIII

List of Figures
Figure 1. FDF in the context of a train ... 2

Figure 2. Integrated Modular Platform overview .. 6

Figure 3. Example of a Logical to physical mapping and accesses. The red arrow represents
RO access whereas the black one RW. ... 9

Figure 4. FDF software components. ..10

Figure 5. FDF Dataflow perspective ...25

Figure 6. Behaviour of the FDF in 3 phases. ..26

Figure 7. Configuration phase. ...27

Figure 8. Initialization phase. ..28

Figure 9. Driver initialisation. ..28

Figure 10. Initialization of IO drivers. ..29

Figure 11. Initialization of NIC driver. ..29

Figure 12. Initialization of watchdog drivers. ...30

Figure 13. Initialization of ECU driver. ..30

Figure 14. Data initialisation phase. ..30

Figure 15. Initialization of Messages. ..31

Figure 16. Initialization of Variables. ...32

Figure 17. Initialization of Topology objects. ...33

Figure 18. Function initialisation phase. ..34

Figure 19. Initialization of Synchronization functions...35

Figure 20. Initialization of Health functions. ..35

Figure 21. Initialization of IOFunctions. ...36

Figure 22. Initialization of MessageFunctions. ..37

Figure 23. Initialization of NetworkFunctions. ...38

Figure 24. Initialization of RedundancyFunctions. ...38

Figure 25. Initialization of LogFunctions..39

Figure 26. Initialization of MonitoringFunctions. ..40

Figure 27. Initialization of TopologyFunctions. ..40

Figure 28. Initialization of Deployment functions. ..41

Figure 29. Initialization of UserFunctions (EXE). ...41

Figure 30. Initialization of UserFunctions (DLL). ...42

Figure 31. Cyclic execution phase. ...43

Figure 32. Data monitoring use case. ...44

Figure 33. Message composing use case. ..45

Figure 34. Message parsing use case. ...45

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page IX

Figure 35. Get Message use case. ...46

Figure 36. Receive Message use case. ..46

Figure 37. Send Message use case. ..47

Figure 38. Set Message use case. ...47

Figure 39. Global time synchronisation use case. ...48

Figure 40. Refresh Watchdog use case. ...48

Figure 41. Read Analog Input use case. ...49

Figure 42. Read Digital Input use case. ..49

Figure 43. Write Digital Output use case. ...50

Figure 44. Write Analog Output use case. ..51

Figure 45. Redundancy Manager use case. ...52

Figure 46. Data logging use case. ..53

Figure 47. Execution of user application use case. ...53

Figure 48. Data topology discovery use case. ..54

Figure 49. Deadline checking use case. ...54

Figure 50. Disable execution use case. ..55

Figure 51. Load checking use case. ...55

Figure 52. Output checking use case. ..56

Figure 53. Temperature checking use case. ...56

Figure 54. Reset platform use case. ...57

Figure 55. Executable and configuration deployment use case. ...57

Figure 56. Logical View of the FDF with internal and external communication77

Figure 57. Steps in the security concept ...78

Figure 58. Elements for potential risk analysis. Source: Magerit [10].79

Figure 59. Primary and secondary system assets ..81

Figure 60. Logical and Physical view of the bogie monitoring systems (BMSA).82

Figure 61. Severity of risk. ..91

Figure 62. Excerpt of Functional Security Assessment requirements for ISASecure certification
for two functional requirements ‘Access Control’ and ‘Use Control’.99

Figure 63. Integrated modular platform overview. ... 106

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page X

List of Tables
Table 1: FDF’s fundamental Functions ...59

Table 2: FDF’s fundamental Services ...59

Table 3: FDF’s Functions and Services ..59

Table 4: FDF PHA, Guidewords and deviations ..60

Table 5: FDF PHA form, Functional failure mode and Failure effects61

Table 6: FDF PHA form, Measures specification ..61

Table 7: FDF PHA, List of System Hazards and relevant FDF Functions and deviations64

Table 8: FDF PHA - countermeasures, Communication function ..65

Table 9: FDF PHA - countermeasures, Configuration management66

Table 10: FDF PHA - countermeasures, Framework management function68

Table 11: FDF PHA - countermeasures, Functions management ...68

Table 12: FDF PHA - countermeasures, Input/Output function ...69

Table 13: FDF PHA - countermeasures, Message function ..70

Table 14: FDF PHA - countermeasures, Holding Brake countermeasures70

Table 15: FDF PHA - countermeasures, Time management function71

Table 16: FDF PHA - countermeasures, Fault management function72

Table 17: FDF PHA, Application conditions ..73

Table 18: FDF PHA, Recommendations ...74

Table 19: CONNECTA requirements – FDF Software Components mapping75

Table 20: Security concept - Assets used ...83

Table 21: Security Requirements of FDF. ...89

Table 22: Security objective coverage. ...89

Table 23: List of Abbreviations ... 111

Table 24: FDF Process Hazard Analysis .. 120

Table 25: Security Requirements ... 129

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 1 of 113

Chapter 1 Introduction

1.1 About this document

This document focuses on describing the proposed Design concept for the TCMS Functional
Distribution Framework (FDF), considering both safety and security concepts. It also aims to
provide the proposed Safety concept and Security concept for the TCMS framework as well
as summarise the conclusions obtained from the reviewing and assessment activities of the
‘TCMS framework concept’.
This deliverable is organized in this way: Chapter 1 explains the motivation for creating the
Functional Distribution Framework and explains the characteristics of the same. Chapter 2
describes the proposed ‘Design concept’ for the ‘TCMS framework’, considering both the
safety and security concepts, by explaining the conceptual, structural and behavioural views.
Then, the Safety Process Hazard Analysis and the resulting Safety Concept are described in
chapter 3. After this, chapter 4 details the tasks that have been carried out in the process of
creating the Security Concept and shows its results. In chapter 5, we can find the summary of
the conclusions obtained from the reviewing and assessment activities of the ‘TCMS
framework concept’. Finally, chapter 6 explains how the FDF is integrated into the Integrated
Modular Platform (IMP) before showing the summary of the activities in this task in chapter 7.

1.2 Functional Distribution Framework Concept

Functional Distribution Framework (FDF), the application framework concept for modular
integration of TCMS applications, aims to host distributed safety-critical and non-critical
application side-by-side on the same hardware platform in distributed next-generation TCMS
systems. This solution will have to provide solutions to fulfil functional safety-critical and non-
critical requirements and non-functional requirements (including security) that support
functional distribution, interoperability, reconfiguration, deterministic inter-partition
communication, hardware and communication abstraction and virtual coupling of services. The
Functional Distribution Framework for the next generation TCMS needs to fulfil a set of
requirements, in order to overcome today’s TCMS limitations and provide further functionalities
and enhancements.

1.2.1 Motivation

The main goal is then to provide the “Functional Distribution” architecture concept for a mixed
criticality embedded platform, offering an execution environment for distributed TCMS safe and
secure applications up to SIL4. This execution environment must ensure a strict temporal and
spatial partitioning, location transparency and abstraction from the underlying network
protocols and hardware. Figure 1 illustrates the FDF layer in the context of two train cars of a
train. Two Ethernet Consist Networks (ECN) can be seen, one for each train car and a set of
Electronic Control Units (ECU) distributed among the ECNs. Some applications of different SIL
run in the ECUs and the Functional Distribution Framework abstracts these from the everything
underneath, i.e., the FDF abstracts the applications from the Input/Output management and
the network which will be the so-called Drive-by-Data technology, which aims to provide an
Ethernet-based deterministic network also in the context of this project. Therefore, in the end,
the FDF is an abstraction layer from the I/O Management and communication and this implies
location too since the application will not know anything about the origin or destination of the
data they consume or provide. Besides, the FDF also abstracts the applications from the

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 2 of 113

synchronisation of the different FDF nodes within a consist, since it is responsible for getting
the global clock from the network and updating the system clock of each concrete ECU.

Figure 1. FDF in the context of a train

In order to achieve the previously mentioned goals, the Functional Distribution Framework
must provide a set of services:

– Initialization.
– Global clock synchronisation.
– Scheduled execution of applications (of different SIL).
– Safe local data distribution.
– Safe and secure remote data distribution.
– Transparent IO reading and writing.
– Health-monitoring.
– Remote monitoring.
– Logging.
– Deployment, which means providing the ability to update an application without altering

the rest.

1.2.2 High-level requirements

If we go more into detail, the Functional Distribution Framework for the next generation TCMS
needs to fulfil a set of requirements to overcome today’s TCMS limitations and provide further
functionalities and enhancements. These are described in the following lines.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 3 of 113

1.2.2.1 Technical Requirements

Configuration and management services
– Configuration services: The framework needs to offer services to read, parse and load

data from a configuration file, which will contain all required information in order to set
up the system. At the same time, it must check the content for coherency and integrity.
The framework also needs to allow the online system reconfiguration during the train
inauguration process.

– Partition management: A memory manager needs to guarantee the isolation of memory
spaces. Besides, a cyclic executive scheduler must give and take away access to the
processor when corresponds.

– Process management: In order to perform optimal process management, the
framework must offer services to create and manage timers for sequential execution
and semaphores for sequential and concurrent execution. Each process must wait for
a “start semaphore” to be signalled and, when execution is finished, it must signal a so-
called “finish semaphore”. The identifiers of both semaphores are specified in the
configuration file.

– Function management: For correct function management, the framework must offer
services to create and manage threads and timers. The main configuration parameters
of a thread would be its priority and the function or functions that are executed. It must
be able to execute functions sequentially, i.e. by the use of only one thread for all, or
concurrently in a multithread way.

– Time management: Having a global system time is essential to execute distributed
applications, especially when they are time-triggered. In order to have a correct global
system time, the Framework offers a service to get the global time that arrives from the
network.

– Memory management: The Framework offers services to create, configure and manage
shared memories.

– Communication management: The FDF shall allow sending and receiving messages
to and from other FDF nodes of the network in a transparent way and without
knowledge of the underlying networking technology.

– Data exchange management: The Framework offers services to create exchange
variables for data sharing between different processes. Variables are data structures
defined by a unique identifier, a data type, an updating semantic (e.g. sample, buffer)
and some quality of service parameters (e.g. deadline, validity, freshness, persistence).
Analogously, the framework offers services to create Messages, which are data
structures used to communicate with remote applications in other nodes.

– Incremental certification and re-certification of applications: Among the management
services, the FDF should facilitate the certification of concrete applications, ensuring
that the rest of the applications are unaffected.

Time services: Since the next generation TCMS is supposed to be a functional distribution
architecture framework which can host different applications, from this point of view, the time
inside this system should be unique and independent of partition execution within an integrated
module. All the integrated modules should use the unique time and all time values or capacities
reference only to this unique time, instead of relative to any partition execution. Apart from
unique time mechanism, TCMS must also provide other time management services such as
creating timers.

Input/output services: Another aspect of the Framework is that it must offer a service to
access an I/O device, which can be configured as input or output, analogue or digital and also

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 4 of 113

map this value to an exchange variable where the value is written to and read from. The
framework will guarantee that at the beginning of each basic cycle (loop) the current value of
every used input is stored in the associated exchange variable. Similarly, the framework will
guarantee that at the end of each basic cycle the current value of every used output is set
according to the containment of the associated exchange variable.

Real-time support: Scheduling of partitions should be feasible through the standard
application programming interface (API) which is provided by the framework. Partitions could
be scheduled on a cyclic basis, which enforces the operating system (OS) to maintain a major
time frame for all the partitions. Major time frame will periodically repeat throughout the
integrated module’s runtime operation. The target framework is supported to provide hard real-
time. Mechanisms need to be designed to ensure the hard real-time so that the framework can
fulfil SIL4 functions requirements. Scheduling of the threads within the same partition should
be designed to meet the requirement that some threads should not be pre-empted, in order to
implicitly ensure the real-time support of the architecture. At the same time, the processor will
always be granted to the highest priority of all the threads.

Fault isolation: This goal framework must be designed to have fault containment. The
applicable way is that this execution environment ensures strict space partitioning so that it is
not possible for a partition to access the memory space of another partition. Robust partitioning
for TCMS should comprise the protection of each partition’s addressing space, through specific
memory protection mechanisms (e.g. mechanisms implemented in a hardware memory
management unit (MMU)). At the same time, functional protection should be implemented to
manage the privilege levels and restrictions to the execution of privileged instructions.

Health monitoring and error-handling: Health monitoring is another of the facets of the FDF.
It must provide with the recognition of system status concerning errors and failures that might
occur or have occurred and as such help to identify faults in the system and mitigate their
consequences, i.e. maintaining safe behaviour. This can be the result of, e.g. timeouts for
process data and/or collecting and analysing status information of components and devices.
Health monitoring will take into account different error sources, log them and determine
recovery actions configured by the system designer.

Safety services: Safety is a significant virtue for the platform, as it must be able to host next-
generation TCMS applications up to SIL4. In order to achieve such a SIL level, safety
measures must be taken throughout the whole framework. The CRC check shall be used to
protect the configuration at system setup and the SDT layer must be used to guarantee that a
message has not been corrupted in the way to the destination. Moreover, the variable stores
must be mirrored and the IO readings carried out redundantly.

Security services: The target FDF shall grant data integrity, authenticity and confidentiality.
In order to do so, software or hardware security mechanisms shall be used throughout the
framework. As an example, the framework must provide cryptographic mechanisms in the
communication component to decrypt incoming messages and encrypt outgoing ones or make
use of strict access control for the use of the monitoring functionality.

Requirements for underlying hardware: TCMS should meet some specific requirements for
the processors. The processing capacity should be sufficient to meet the worst-case timing
requirements and it must be granted that the processor has access to required I/O and memory
resources and also to time resources to implement the time services.
It must also be assured also that the processor provides atomic operations for implementing
processing control constructs and a mechanism to transfer control to the OS if the partition
attempts to perform an invalid operation. If we are to achieve SIL3/4, lock-step architecture is
needed for the processors. MMU hardware or a BSP software layer providing Built-in Tests
(BIT) could be some of the solutions.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 5 of 113

In order to realise the FDF for the next generation TCMS, another aspect to be taken into
account is that interrupts need to be strictly forbidden to disturb the time partitioning. Besides,
for the goal framework, we need not only the definition of the use of multiple threads within a
partition scheduled to execute concurrently on different processor cores, but also the definition
of scheduling behaviours associated with multiple partitions which need to be scheduled to
execute concurrently on different processor cores.

1.2.2.2 Non-technical characteristics

A need for System Architecture Engineering Method: A system architecture engineering
method, which is a systematic, documented, intended way how system architecture
engineering is realized, needs to be established for the Safe4Rail project. The reason is that
systematic approach is needed to engineer good quality system architecture and a consistent
set of its representations (views, models, visions, quality cases, analysis reports, simulations).
The system architecture is critical since it supports achievement of critical architecturally
significant requirements; it enables engineering of system quality characteristics and attributes
and also drives all logically downstream activities. Finally, it greatly affects cost, schedule and
risk.
Moreover, quality characteristics such as performance, safety, security, availability and
interoperability can be considered main architectural drivers for the system that is the subject
of the Safe4RAIL project. Thus, the evaluation of the architecture should be based on the
architectural quality cases which should be developed for the particular quality characteristics
and their attributes. The architectural quality case consists of Architectural Claims,
Architectural Arguments that justify belief in those claims and Architectural Evidence which
support the arguments.

Safety and the relevant standards: The set of standards containing the EN 50126 series [2],
EN 50129 [4] and EN 50128 [3], comprise the railway sector equivalent of the EN 61508 series,
a general standard for functional safety in electronic safety-related systems, as far as Railway
Communication, Signalling and Processing Systems are concerned. To cover the safety-
related communication in such kind of systems that set of standards was completed by EN
50159. Even though the new versions of EN 50129 and EN 50126 have been published, the
original versions are active, so the current pre-norms should be the working versions in the
Safe4Rail project and must be considered when defining the FDF too.

Security and the relevant standards: As far as the IT security in the Railway domain is
concerned no such a set of standards as that addressing functional safety in railway
applications has yet come into existence. However, the work on it has already started.
Currently, the NWIP (New Work Item Proposal) of the security standard called Railway
Applications - Communication, signalling and processing systems – IT security requirements
for electronic systems for signalling is under preparation in SC9XA of CENELEC. This
standard, if finished, would have likely provided most answers to the security issues related to
the new generation of TCMS. Even though we will have to do without it in the Safe4Rail project
the approach to the security of electronic railway systems for signalling indicated in that NWIP
will surely provide good guidance. It happens that this standard will be based on IEC 62443
series, which deals with the cybersecurity in industrial systems - the studies have shown that
there is a considerable degree of overlap in both domains as far as the IT security regulations
and rules are concerned. Therefore this standard should be considered foremost, along with
others such as “IEC 15408 – Common Criteria” and “DIN VDE V 0831-104” [20] and “VDE V
0831-102” [19], both draft standards elaborated by the German DKE standardisation
committee.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 6 of 113

1.2.3 Integrated Modular Platform Concept

The goal of the Integrated Modular Platform (IMP) is the facilitation of system integration,
interfacing and information transfer from one application partition to another application
partition in the networked system. It focuses on all system integration capabilities required to
define an integrated modular platform which can host different TCMS, door control, braking,
safety or other non-critical functions in one system. The integrated modular platform hosts
application functions and provides specific services to critical and non-critical applications, to
establish robust software abstraction and provide all resources and timely information
(sensors, global variables) access to applications.
The IMP does not depend on applications. Modular applications hosted on an Integrated
Modular Platform can be tested in isolation and integrated into the system, without unintended
interactions and interdependencies. The IMP represents the lower part of the integrated
system, see Figure 2.

Figure 2. Integrated Modular Platform overview

In the figure, the inter-process and inter-partition communication and configurable application
execution are part of the so-called Functional Distribution Framework (highlighted in brown
colour), whereas TCMS Ethernet network represents the inter-node communication system or
the so-called Drive-By-Data framework. Both parts are described in detail in the next two
sections.
The IMP approach implies a paradigm shift from the current federated architecture of loosely
connected applications to a much more integrated view, where resources are fundamentally
shared between multiple applications. The IMP is a subsystem, whose only function is to host
different applications. The configuration of this subsystem, since it is underlying all other
applications, is of fundamental importance and must ensure the safe and reliable operation of
all applications that make use of it.
The usage of the IMP in a safe and reliable context is ensured through its safe-by-design
components as indicated in the next chapters, combined with a unified methodology to its
configuration. The configuration of integrated modular platform components adapts the
integrated modular platform to a specific use case and topology or architecture.

Control Unit
(CU)

SA S S

Control Unit
(CU)

...

Control Unit
(CU)

A

„Drive-By-Data“ TCMS Ethernet Network

TCMS Distributed Embedded Computing – Application Framework for „Functional Distribution“

ASS

Control Unit
(CU)

Control Unit
(CU)

TCMS and Subsystems: Sensors and Actuators

 Inter-Process/Inter-Partition Communication + Configurable Application Execution

„Drive-By-Data“ TCMS Ethernet Network (ETB + all ECN subnets)

App
N...

App
1

App
N...

App
1

App
N...

App
1

App
N...

App
1

App
N...

App
1

App
N...

App
1

App
N...

App
1

App
N...

App
1

App
N...

App
1

App
N...

App
1

Config.

Config.

Safety

Redundancy Management

Security

System-Level Time Partitioning
Unambig.Key System Interfaces

Fault Containment
Logical/Temporal Decoupling

Mixed Criticality w. hard RT

TCMS Next generation
Integrated Modular Platform:

Reconfigurable
Fault-Tolerant Distributed

Embedded Computer

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 7 of 113

Chapter 2 Design concept

2.1 Introduction

This chapter explains the design concept of the FDF. First, the conceptual view shows the
fundamental elements in which the FDF is based. The structural view shows the architecture
of the proposed design by clearly describing the functionality and characteristics of each of the
components and how they make use of the previously mentioned fundamental elements.
Finally, the behaviour of the FDF is explained in terms of sequence diagrams of concrete use
cases in the behavioural view subchapter.

2.2 Conceptual view

This chapter describes all the physical and logical elements that interact within the Functional
Distribution Framework. Concrete devices and peripherals such as the Network Interface Card,
the Input-Output Interface Card, the Watchdog, storage or CPU also interact with the FDF but
are not described in this chapter.

2.2.1 Elements

2.2.1.1 Variable

• Data structure to share information between parts of the applications. It can also be a
complex nested structure.

2.2.1.2 Message

• Data structure to share Variables between parts of the applications residing in different
computing nodes.

2.2.1.3 SharedMemory

• Memory space that can be simultaneously accessed by several Processes.

• It is statically created at compilation time and filled at runtime.

• Depending on the content type there are VariableMemories and MessageMemories.

2.2.1.4 Function

• Schedulable software unit that implements some logic.

• It typically reads the required input data from Variables, Messages or Hardware devices
and writes the generated output data to Variables, Messages or Hardware devices.

• Types:
o ApplicationFunction:

 Implements the logic of the application
 It is provided and instantiated by the user.

o ServiceFunction:

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 8 of 113

 Implements logic of a FDF service.
 It is provided and instantiated by the FDF.

2.2.1.5 Process

• Executable unit managed by the operating system with isolated memory address space
protected against usage from other processes.

• A process consists of one or more threads.

• Temporal separation to other processes is not guaranteed.

• Executes some Functions according to the scheduling plan specified in the
Configuration.

• Shared memory can be read by functions of many processes but written by functions
of only one process.

• It is configured and executed at runtime.

2.2.1.6 Partition

• Logical unit of isolation with exclusive access to predetermined memory space and to
the processor in predetermined time slots.

• A partition is composed of one or several processes.

• Processes can run sequentially (one after the other) or concurrently (with specific
priority levels assigned to the processes).

• It is statically created at compilation time.

2.2.1.7 Schedule

• The plan, sequence or time allocation of an execution.

• Types:
o Partition Schedule:

 Scheduling plan of the Partitions.
 A Partition can belong to different Partition Schedules.
 There can be many Partition Schedules, but only one is loaded at a time.

o Process Schedule:
 Scheduling plan of the Processes.
 A Process can belong to different Process Schedules.

o Function Schedule:
 Scheduling plan of the Functions.
 A Function can belong to different Function Schedules.

2.2.2 Mapping of elements

This chapter explains how every FDF element interacts with each other. In Figure 3 we can
see the mapping between the different logic and physical elements. Variables are stored in

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 9 of 113

Variables Shared Memories and Messages Shared Memories contain Messages. A partition
can contain one or more processes of the same SIL, while a process can have one or more
functions running in it. There can be as much as needed partitions. As can be seen in the
picture, a process will have Read-Write (RW) access only to its own Variables Shared Memory,
which will be of the same SIL, and Read-Only (RO) access to the rest. Besides, all processes
can have RW access to the messages shared memory, regardless of the SIL. The reason for
this is that the messages shared memory will always be SIL0 because typically the network
will use a non-safe protocol implementation. Every process can have RW access to the rest of
physical elements, such as, for instance, the Watchdog, NIC or IOC. The concrete access right
of the different processes to the elements will be given per configuration.

Variable
Memory 0-1

Partition SIL 0

Process 0-1

Fu
nc

tio
n

1

Fu
nc

tio
n

2

Fu
nc

tio
n

N

Process 0-2

Fu
nc

tio
n

1

Fu
nc

tio
n

2

Fu
nc

tio
n

N

Process 0-N

Fu
nc

tio
n

1

Fu
nc

tio
n

2

Fu
nc

tio
n

N

Variable 1

Variable 2

Variable N

Partition SIL 2

Process 2-1

Fu
nc

tio
n

1

Fu
nc

tio
n

2

Fu
nc

tio
n

N

Process 2-2
Fu

nc
tio

n
1

Fu
nc

tio
n

2

Fu
nc

tio
n

N

Process 2-N

Fu
nc

tio
n

1

Fu
nc

tio
n

2

Fu
nc

tio
n

N

Partition SIL 4

Process 4-1

Fu
nc

tio
n

1

Fu
nc

tio
n

2

Fu
nc

tio
n

N

Process 4-2

Fu
nc

tio
n

1

Fu
nc

tio
n

2

Fu
nc

tio
n

N

Process 4-N

Fu
nc

tio
n

1

Fu
nc

tio
n

2

Fu
nc

tio
n

N

Message Memory SIL 0

Message 1 Message 2 Message N

IOC

NIC

Clock

Variable
Memory 0-2

Variable 1

Variable 2

Variable N

Variable
Memory 0-N

Variable 1

Variable 2

Variable N

Variable
Memory 2-1

Variable 1

Variable 2

Variable N

Variable
Memory 2-2

Variable 1

Variable 2

Variable N

Variable
Memory 2-N

Variable 1

Variable 2

Variable N

Variable
Memory 4-1

Variable 1

Variable 2

Variable N

Variable
Memory 4-2

Variable 1

Variable 2

Variable N

Variable
Memory 4-N

Variable 1

Variable 2

Variable N

Figure 3. Example of a Logical to physical mapping and accesses. The red arrow represents RO

access whereas the black one RW.

2.3 Structural view – software components

The exposed physical and logical elements of the FDF are implemented and managed by
some software components, which are defined in terms of the functionality they offer and the
interfaces they provide and require. A software component may have different versions
depending on the SIL they can be used on, typically by using more rigorous development
methodologies and by adding more safety-related functionality to the lower SIL versions. On
the other hand, the provided interfaces are required and other components provide the
required interfaces. Figure 4 shows the components of the Framework. As can be seen, they
are clustered in the group's Hardware Access Services, Operating System Services and
Functional Distribution Services, which are explained in the following chapters.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 10 of 113

Figure 4. FDF software components.

2.3.1 Hardware Access Services

These components provide access to the underlying hardware. They may provide either
complete implementations of the hardware access services or wrapper functions to the
hardware access services provided by the underlying Drivers. The components provide an
independent access layer to the hardware and are thus partly hardware-dependent. They have
the same interface but different implementations for different IO and NIC hardware.

2.3.1.1 IODriverManager

• Functionality: Provide services to access Input and Output Cards.

• Provided interfaces:
o IAIDriver: Read analog input values and errors.
o IDIDriver: Read digital input values and errors.
o IAODriver: Read and write analog output values and errors.
o IDODriver: Read and write digital output values and errors.

2.3.1.2 NICDriverManager

• Functionality: Provide services to access Network Interface Cards.
• Provided interfaces:

o IBEDriver: Send and receive best-effort Messages.
o IRTDriver:

 Send and receive real-time Messages.
 Obtain the global time.

cmp Components

Functional Distribution Framework

Operating System ServicesHardware Access Services

Functional Distribution Services

FrameworkManager FunctionManager

ConfigurationManager

IOManagerVariableManager

NetworkManager MonitoringManager

IODriv erManager NICDriv erManager

SynchronizationManager

FileManager MemoryManager TimeManager

ConcurrencyManager

HealthManager

ExecutionManagerWDDriv erManager

LogManager DeploymentManager RedundancyManager

SocketManager

MessageManager

TopologyManager

LibraryManager

ECUDriv erManager

CryptoManager

UserAccountManager

SecurityMonitoringManager

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 11 of 113

2.3.1.3 WDDriverManager

• Functionality: Provide services to access Watchdogs.

• Provided interfaces:
o IWDDriver: Configure and refresh the Watchdog.

2.3.1.4 ECUDriverManager

• Functionality: Provide services to access the ECU data.

• Provided interfaces:
o IECUDriver: Get load and temperature of the ECU.

2.3.2 Operating System Services

These components provide an abstraction layer of services related to the Operating System.
Due to their dependence on the underlying OS services, they may have different
implementation for different Platforms/Operating Systems. However, the interface to access
the services shall remain OS-independent. They may provide either complete implementations
of their services or wrapper functions to the services provided by the underlying Operating
System.

2.3.2.1 FileManager

• Functionality: Provide services to manage files.

• Provided interfaces:
o IFile: Create, delete, read and write files.

2.3.2.2 MemoryManager

• Functionality: Provide services to manage Shared Memories.

• Provided interfaces:
o ISharedMemory: Open, close and read Shared Memories.

2.3.2.3 ConcurrencyManager

• Functionality: Provide services to synchronise the concurrent access to shared
resources and concurrent executions.

• Provided interfaces:
o ISemaphore: Open, wait and post semaphores.
o IMutex: Open, lock and unlock mutexes.

2.3.2.4 TimeManager

• Functionality: Provide services to manage the system clock and timers.
• Provided interfaces:

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 12 of 113

o IClock: Get and set the time of the system clock.
o ITimer: Create, delete and configure timers.

2.3.2.5 SocketManager

• Functionality: Provide services to set communication channels through sockets.
• Provided interfaces:

o ISocket: Create sockets, establish output connections and listen to inputs
connections, send and receive data.

• Required interfaces: IBEDriver and IRTDriver.

2.3.2.6 LibraryManager

• Functionality: Provide services to handle dynamic libraries.
• Provided interfaces:

o ILibraryManager: Opens, closes and handles errors of dynamic libraries.

2.3.2.7 ExecutionManager

• Functionality:
o Guarantee isolation between Partitions.
o Execute Partitions according to the Partition Schedule.
o Execute Processes according to the Process Schedules.

• Provided interfaces:
o IScheduling: Change from one Partition Schedule to another.

2.3.3 Functional Distribution Services

The Functional Distribution Services provide the actual middleware services that are used by
applications. The code of these components is portable across different Platforms/Operating
Systems because the Hardware Access Service and Operating System Service layers provide
specified interfaces. Applications that make use of the FDF services are functionally portable
across platforms. The three last software components, i.e. CryptoManager,
UserAccountManager and SecurityMonitoringmanager, are product of the Security
Concept, as they provide countermeasures against security threats.

2.3.3.1 VariableManager

• Functionality: Read, write, force and unforce Variable values; read and write Variable
qualities; read Variable update time.

• Provided interfaces:
o IVariable: It encapsulates a Variable and provides functions to read, write, force

and unforce its value and read and write its quality. A Variable is stored in a
Shared Memory and if it is safe is also stored mirrored in a second Shared
Memory. When a safe Variable is read the mirrored instance is unmirrored and

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 13 of 113

compared field by field with the main instance and if something is different, the
quality is set to bad.

• Required interfaces: IMutex and IClock.

2.3.3.2 MessageManager

• Functionality: Provide services to compose, to parse and to access the content of
Messages.

• Provided interfaces:
o IMessage: It encapsulates a Message and provides functions to read and write

the value and the SDT layer. When the value of the Message is set, an internal
timestamp is updated.

o IComposeFunction: It reads the state of the system and if it is safe it reads the
default values of the specified Variables, else it reads the values and qualities.
After that composes a Message with them, with the quality of good for the
default values. If the Message contains safe Variables, it computes the SDT
layer and attaches it to the Message.

o IParseFunction: It reads a Message, parses from it the values and qualities,
and writes the values to the specified Variables. If the Message contains safe
Variables, checks the SDT layer of the Message and if it is wrong sets the
qualities of all the Variables to bad, else sets the qualities of all the Variables to
the parsed ones.

• Required interfaces: IVariable, IReceiveFunction, ISendFunction, IMutex and IClock.

2.3.3.3 ConfigurationManager

• Functionality: Provide services to manage the Configuration of all the services
provided by FDF This manager checks and loads the configuration and saves it into
shared memory, then the other managers read the configuration.

• Provided interfaces:
o IConfiguration: It encapsulates the Configuration and offers a function to

initialise it. If it is a safe process, it opens the Shared Memory with the specified
name, maps its content to a Configuration object and checks its CRC. If it is not
a safe process, it opens, reads and closes the Configuration file with the
specified name and creates the Configuration object. If it is configured as a
safety configuration loader, it opens the Shared Memory with the specified
name and maps the Configuration object to it. Then, checks the coherency of
the Configuration. Finally, it returns the corresponding error code depending on
the following situations:
 Configuration with the specified name does not exist.
 The File fopen function returns an error.
 The File fread function returns an error.
 The File fclose function returns an error.
 The SharedMemory shm_open function returns an error.
 The SharedMemory mmap function returns an error.
 The CRC is not correct.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 14 of 113

 The coherency of the Configuration is not correct.
 Everything is ok.

• Required interfaces: IFile and ISharedMemory.

2.3.3.4 NetworkManager

• Functionality: Provide services to send and receive Messages to and from remote
nodes.

• Provided interfaces:
o ISendFunction: It reads the specified Message and sends it to the specified

remote nodes using a communication protocol through a socket. Finally, it writes
the corresponding error code in the result Variable depending on the following
situations:

• The Socket sendto function returns an error.
• Everything is ok.

o IReceiveFunction: It reads the specified datagram of a communication protocol
through a socket. If the receiving function returns an ok, it sets the received
datagram as the value of the specified Message. Finally, it writes the corresponding
error code in the result Variable depending on the following situations:

• The Socket recvfrom function returns an error.
• The Socket recvfrom function returns an ok but no message.
• Everything is ok.

• Required interfaces: IMessage and ISocket.

2.3.3.5 MonitoringManager

• Functionality: Provide services to monitor Variables remotely.
• Provided interfaces:

o IMonitoringFunction: Provide remote access to Variables. It executes a server
that implements the monitoring protocol. When a request arrives, it replies with the
information of the monitored Variables: type, default value, value, quality, forced
and timestamp. It is executed in a process different from the ones that produce the
monitored Variables and the access to the Shared Memories of those Variables is
configured and assured by the Framework as read-only. Finally, it writes the
corresponding error code in the result Variable depending on the following
situations:

• The Socket accept function returns an error.

• The Socket recv function returns an error.

• The Socket send function returns an error.

• Required interfaces: IVariable and ISocket.

2.3.3.6 IOManager

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 15 of 113

• Functionality: Provide services to move data from Inputs to Variables and from
Variables to Outputs.

• Provided interfaces:
o IAIFunction: It reads an analog input from the AIDriver and writes the value to

the input Variable value. If the return of the read function is ok sets the quality
of the Variable to good and else to bad. In any case, it writes the corresponding
error code in the result Variable depending on the following situations:
 The AIDriver read function returns an error.
 Everything is ok.

o IDIFunction: It reads a digital input from the DIDriver and writes the value to
the input Variable value. If the return of the read function is ok sets the quality
of the Variable to good and else to bad. In any case, it writes the corresponding
error code in the result Variable depending on the following situations:
 The DIDriver read function returns an error.
 Everything is ok.

o IDOFunction: It reads the quality of the state variable and if it is good reads its
value. If the quality is bad or the quality is good and the value equal to safe, it
reads the default value of the output Variable, else reads the quality. It the
quality is bad, it reads the default value, else reads the current value. Then it
writes the read value to the digital output through the DODriver. After that, it
reads the digital output and compares it to the output Variable. Finally, it writes
the corresponding error code in the result Variable depending on the following
situations:
 The quality of the output Variable is bad.
 The DODriver write returns an error.
 The DODriver read returns an error
 The written and read values are different.
 Everything is ok.

o IAOFunction: It reads the quality of the state Variable and if it is good reads its
value. If the quality is bad or the quality is good and the value equal to safe, it
reads the default value of the output Variable, else reads the quality. It the
quality is bad, it reads the default value, else reads the current value. Then
writes the read value to the analog output through the AODriver. After that, it
reads the analog output and compares it to the output Variable. Finally, it writes
the corresponding error code in the result Variable depending on the following
situations:
 The quality of the output Variable is bad.
 The AODriver write returns an error.
 The AODriver read returns an error
 The written and read values are different.
 Everything is ok.

• Required interfaces: IAIDriver, IDIDriver, IAODriver, IDODriver and IVariable.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 16 of 113

2.3.3.7 SynchronizationManager

• Functionality: Provide services to synchronise the local clock with the global time.
• Provided interfaces:

o ISynchronizationFunction: It gets the global time from the RTDriver and the
local time from the Clock. If both functions return an ok and the difference
between them is greater than a specified value, it sets the local clock with the
global time. Then it writes the corresponding code in the result Variable
depending on the following situations:
 The Clock gettime function returns an error.
 The RTDriver gettime function returns an error.
 The RTDriver gettime function returns a time not greater than in the

previous cycle.
 The Clock settime function returns an error.
 Everything is ok.

• Required interfaces: IRTDriver and IClock.

2.3.3.8 FunctionManager

• Functionality: Provide services to execute the registered Application and Service
Functions.

• Provided interfaces:
o IFunctionManager: It provides functions to register Functions to be executed

and to execute all the registered Functions. In the execution phase, it reads the
quality of the execution flag Variable of the Function. If the quality is good, it
reads the value of the Variable, else the default value. If it is true, gets the
current time, executes the Function, and gets the current time again to calculate
the execution time of the Function, which is written in the execution time
Variable of the Function. If any of the current time functions call returns an error,
it sets the quality of the execution time Variable to bad. Finally, it writes the
corresponding code in the result Variable depending on the following situations:
 Any gettime function returns an error.
 Everything is ok.

• Required interfaces: IFunction, IClock and IVariable.

2.3.3.9 FrameworkManager

• Functionality: Provide service to instantiate/open all the resources specified in the
Configuration and expose the API.

• Provided interfaces:
o IFrameworkManager: It provides functions to:

 Configure: Receives a name and calls the initialise function of
IConfiguration.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 17 of 113

 Initialize: According to the configuration, initialises the specified drivers
(WD, IO, NIC and ECU) and stores (Variables, Messages, Topology).
Then it initialises and registers in FunctionManager the configured
functions (Synchronization, Health, IO, Message, Network,
Redundancy, Monitoring, Log, Topology, Deployment, UserDLL and
UserEXE).

 Execute: It enters in a loop and waits in the partition semaphore. When
partition starts it signals that semaphore to awake all the processes of
the partition. The process reads the value of its execution flag and if it is
true gets the current time and calls the execute function of the
FunctionManager. When this function returns, gets the current time,
computes the execution time of the process and writes it in the execution
time Variable of the process.

 Register: It registers the specified Function in the FunctionManager.

 Get variable: It returns the reference of the specified Variable.

 Get topology: It returns the reference of the Topology.

 Get log: It returns the reference of the specified Log.

• Required interfaces: All except for SocketManager and ExecutionManager.

2.3.3.10 HealthManager

• Functionality:
o Provide check services:

 Deadlines of Functions/Processes.
o Provide react services:

 Change Schedule Functions
 Disable Execution Functions.
 Terminate Execution Processes.
 Reset the ECU.
 WDT function

• Provided interfaces:
o ITemperatureFunction: It reads the temperature of the specified device (CPU,

Board or Rack) through the ECUDriver. If the function returns an error it sets
the value of the quality of the temperature error Variable to bad; else it sets to
good. Then checks if the temperature is within the specified range and sets the
result in the value of the error Variable. Finally, it writes the corresponding error
code in the result Variable depending on the following situations:

 The ECUDriver get_temperature function returns an error.
 Everything is ok.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 18 of 113

o ILoadFunction: It reads the load of the specified device (CPU, Board or Rack)
through the ECUDriver. If the function returns an error it sets the value of the
quality of the load error Variable to bad; else it sets to good. Then checks if the
load is not greater the specified maximum and sets the result in the value of the
error Variable. Finally, it writes the corresponding error code in the result
Variable depending on the following situations:

 The ECUDriver get_load function returns an error.
 Everything is ok.

o IOutputFunction: It reads the timestamps of the specified Variables, checks if
they have been updated in the current cycle and sets the value of the output
error Variable to true if yes and to false if not.

o IDeadlineFunction: It reads the quality of the execution time Variable. If it is
bad sets the value of the deadline error Variable to true, else reads the value of
the execution time Variable and if it is not greater than the specified deadline
sets the value of the deadline error Variable to false, else to true.

o IDisableExecutionFunction: It reads the quality of the triggering Variable and
if it is bad gets the default value else the current value. If the value is true sets
the value of the execution flag Variable to false, else to true.

o ITerminateProcessFunction: It reads the quality of the triggering Variable and
if it is bad gets the default value, else gets the current value. If the value of the
triggering Variable and if it is true sets the value of the execution flag Variable
to false, else to true.

o IResetPlatformFunction: It reads the quality of the triggering Variables and
they are bad gets the default values else the current values. If all values are
false refreshes the Watchdog.

o IWDFunction: It refreshes the Watchdog through the WDDriver.

• Required interfaces: IWDDriver and IVariable.

2.3.3.11 LogManager

• Functionality: Provide services to write Variable values in files.
• Provided interfaces:

o ILog: It encapsulates the Log object. Provides functions to record Log entries
and to write the Log object in a file. When the maximum size of the Log object
is reached, it overwrites previously recorded Log entries, starting from the
oldest.

o ILogFunction: If a given Variable is true, it creates a log entry with the specified
message and the values of the specified Variables and writes in the Log. Then,
if the write file flag is true calls the function of the Log object to write it in the file.
Finally, it writes the corresponding code in the result Variable depending on the
following situations:
 The Log add function returns and error.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 19 of 113

 The Log write function returns and error.
 Everything is ok.

• Required interfaces: IVariable and IFile.

2.3.3.12 TopologyManager

• Functionality: Provide services to get and update the train topology information.
• Provided interfaces:

o ITopology: It encapsulates the train topology information and provides
functions to read and write the value and the quality of the Topology. When the
value of the Topology is set, an internal timestamp is updated.

o ITopologyFunction: It listens to periodic messages indicating whether the
Topology has been updated or not. If the message is not received within the
expected period, it sets the quality of the Topology to bad. When receives a
message indicating an update it sends a request for the new Topology
information to the server. If the reply from the server is not received with the
expected deadline, it sets the quality of the Topology to bad, else updates the
Topology information and sets its quality to good. Finally, it writes the
corresponding code in the result Variable depending on the following situations:
 The periodic update message is not received within the deadline.
 The reply message is not received within the deadline.
 The Socket recvfrom function returns an error.
 The Socket send function returns an error.
 The Socket recv function returns an error.
 Everything is ok.

• Required interfaces: ISocket, IMutex and IClock.

2.3.3.13 Redundancy Manager

• Functionality: Provide services to manage redundant Functions (enable/disable
redundant instances).

• Provided interfaces:
o IRedundantFunction: It reads the current time and the last update time of the

keepalive Variable sent by the master Function. If the current time function
returns and ok and the current time is greater than the update time plus the
specified deadline, it enables the execution of the redundant Functions by
setting to true the values of their execution flag Variables. If the current time
function returns an error, it sets the quality of the execution flag Variable to bad,
else to good. Finally, it writes the corresponding code in the result Variable
depending on the following situations:
 The Clock gettime function returns an error.
 Everything is ok.

• Required interfaces: IVariable.

2.3.3.14 DeploymentManager

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 20 of 113

• Functionality: Provide service to update configuration files and executables remotely.
• Provided interfaces:

o IDeploymentFunction: It executes a server that implements a secure file
transfer protocol such as FTPS or SFTP. When a request arrives, it checks if
the client is authorised and if so, allows it to get and put files (executables,
libraries and configurations) from and in the system. Finally, it writes the
corresponding error code in the result Variable depending on the following
situations:

 The Socket accept function returns an error.
 The Socket recv function returns an error.
 The Socket send function returns an error.
 Everything is ok.

2.3.3.15 CryptoManager

• Functionality:
o Providing cryptographic services to software components:

 Encryption
 Decryption
 Hashing
 Signature

o Providing interface with the Trusted Platform Module (see Section 4.8).
o It is used by most of the software components.

• Provided interfaces:
o IPublicKeyGenerationFunction: This function generates the corresponding

public key.

o IPublicKeyVerificationFunction: This function performs an embedded public
key validation.

o IKeyManagementFunction: This function deals with storage, use and deletion.

o ISignatureGenerationFunction: This function generates the corresponding
signature for a hashed message.

o ISignatureVerificationFunction: This function verifies the corresponding
signature for a hashed message.

o IHashGenerationFunction: This function computes the hashing for a block of
data, based on MAC key, key length, data and data_length.

o IHashVerificationFunction: This function verifies hash.

o IEncryptFunction: This function encrypts data based on cipher algorithm, user
key, key length, and so on to generate the cipher text from a plaintext.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 21 of 113

o IDecryptFunction: This function decrypts data based on cipher algorithm, user
key length, and so on to generate the plaintext from a cipher text.

o IBase64EncodeFunction: This function encodes data in base 64. This will be
a way to protect data from human-readable format, and when.

o IBase64DecodeFunction: This function decodes data in base 64.

• Required interfaces: IVariable.

2.3.3.16 UserAccountManager

• Functionality:
o Provides services to manage user accounts.

• Provided interfaces:
o IUserManagementFunction:

 Creation: This function generates a unique identifier for the user
account being created, and adds all parameters required for user profile,
such as, first name, surname, email, user manager, role, current
password, previous password etc. A certain number of old passwords
will be associated with a user account to verify passwords are changed
properly.

 Deletion: it deletes a user account, if user is authorized.

 Update: it modifies user parameters, if user is authorized. For example,
password shall be able to be changed.

o IPasswordCheckFunction: This function checks if password satisfies
password policy, for example, alpha-numeric characters, long, and so on,
during the creation of the password.

o IPrivilegesSettingFunction: This function based on user role assigns certain
privileges or permissions, applying least privileges philosophy.

o IKeyManagementFunction: This function deals with assigning a key to the
created user, modifying or deleting it.

• Required interfaces: IVariable, IFile and a subset from those in CryptoManager
component.

2.3.3.17 SecurityMonitoringManager

• Functionality:
o Authentication: Providing user, application and device authentication.
o Authorisation based user account.
o Session management: close session, monitoring timeouts etc.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3 Page 22 of 113

o Monitoring FDF behaviour: at the network level, service availability, application
behaviour, modification of data.

o Monitoring user and application aspects: session open, application partitioning
etc.

o Monitoring transmitted information.
o Generation of reports and notification: login user history, audits, and notification

of the use by alerts, emails etc. These reports will be fully configurable for any
FDF.

o Prevents execution of untrusted code.
o Modification in configuration files.
o Notification of an attack.

• Provided interfaces:
o IApplicationIdentificationFunction: This function will assigned a unique ID to

an application on the FDF. This ID will be used for tracing application behaviour,
that is for monitoring correct operation of access to CPU and network, data
modification and for notifying to a higher system or administrator when
abnormal behaviour is discovered. This information can be stored in the TPM.

o IApplicationProfileFunction: This function will create an application profile
based on configuration files to trace application permissions.

o IAuthenticationVerificationFunction: This function authenticates user based
on user and password, and on the USB or smartcard containing credentials,
device for example by serial number and applications based on unique
identifier.

o ISessionManagementFunction: This function is in charge of creating a
session, locking a session if timeout and closing it.

o ILoginManagementFunction: This function checks logins.

o IAuditEventsConfigurationFunction: This function enables the configuration
of audit events like login, timestamps, audit trail, information for non-repudation,
modification, deletion, user, location, etc.

o IAuditReportingConfigurationFunction: This function enables the
configuration of the audit events defined for reporting. All reports will provide
timestamps based on system time, and additional information considered
relevant, user location etc. This information shall be encrypted and store in a
secure way but means of the CrytoManager.

o IUserLoginReportingFunction: This function enables to list all user accounts
and login history.

o IGetReportFunction: this function enables to get a report, only authorized
users shall get this information. This information will be protected by encryption,
digital signature, digital message reports and timestamps.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3 Page 23 of 113

o INetworkMonitoringFunction: This function shall check all related network
issues: insertion of packages, data flooding, loss of communication, replay of
messages, messages to provoke a DoS attack.

o IMonitoringunction: This function will monitor deletion or insertion of
configuration data or detection of insertion of malicious code, very critical.

o IUseNotificationunction: This function will inform administrator about user
access and actions performed.

o IAttackNotificationFunction: This function shall be used in case of
determination of a possible attack: access to CPU, modification of configuration
files during execution or not. This communication can be done by means of
email, text messages or any other means.

o IIncidentSupportConfigurationFunction: This function will enable the
configuration of automated incident notification services to whom corresponds
(user or system).

o IIncidentNotificationFunction: This function will notify to an authorized user
or system about an incident. This can be made by e-mails, text messages, or
any other means configured before.

o IPasswordExpirationNotificationFunction: this function shall notify user to
modify password after a period of time defined by an administrator.

o IPasswordStrenghEnforcementFunction: This function shall guarantee that
criteria defined for strength: minimum length, use of upper/lower cases, non-
alpha characters etc. In FSA-AC-2.18 it is set a minimum of 6 characters for
passwords.

o IAdministratorAccessVerificationFunction: This function will notify
administrator for getting approval of a user access. This is needed to fulfil FSA-
AC-1.2 Dual Approval Access. The result will be encrypted.

o IMulticastTransmissionVerificationFunction: This function will verify the
source and integrity of the transmissions.

o IMulticastTransmissionHandlingFunction: This function will register
authorized applications to subscribe to multicast transmission, and authorized
applications enabled to send multicast transmissions.

o IErrorHandlingFunction: This function will handle error conditions without
providing information that could be exploited by adversaries.

o IBlacklistingCreationFunction: This function will be used for creating
blacklists to protect FDF against executable code. Administrator can use either
black lists or white lists.

o IWhitelistingCreationFunction: This function will be used for creating
whitelists to protect FDF against executable code.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3 Page 24 of 113

o ICommunicationVerificationFunction: This function will check a loss in the
communication for inputs/outputs or any other transmitted message to be
applied upon loss of communications.

o IBackupCreationFunction: This function will create a backup for recovering
the system either as a result of an attack or for any other reason like a failure.
This backup will be at the user level and system level. Only authorized entities
will be able to create it and it will be saved in the TPM.

o IFDFRecoveryFunction: This function will restore the system by means of a
secure backup after a disruption or failure in the system.

• Required interfaces: Several interfaces of VariableManager, FileManager,
MonitoringManager, ExecutionManager, FunctionManager, NetworkManager,
IOManager, CryptoManager, TimeManager and HealthManager.

2.3.4 FDF Detailed structural view

The following picture shows the full usage of the FDF from the dataflow perspective. Above
the Framework API, there are shown the applications which could belong to different SIL
Levels. They have access to the variable stores and also the message store. From there the
Message Manager passes the composed messages on to the Communication Manager or
vice versa receives composed messages. The Communication Manager is responsible for the
protocol handling. The different paths for deterministic and non-deterministic data are depicted.

The Network Manager offers a common socket type layer giving either access to the TSN ports
(deterministic/time-sensitive data) or the socket interface of, e.g. the TRDP protocol for non-
deterministic data. The non-deterministic data can either be sent to UDP (PD/MD) or TCP/IP
for MD. The Network Manager is also responsible for de-encryption as well as authentication
using, for example, IPsec or MACsec. The Configuration Manager passes the configuration on
to the respective managers whereas an IO Manager offers transparent access to Local I/O.
The File Manager provides a File API. In case of reception of SDT (Safe Data Transmission)
secured messages, the Message Manager evaluates them or calculates and adds for sending
the correct SDT fields.

Besides, the blocks inside the Communication Manager show the different handling of the
typical communication patterns such as cyclic PD (Process Data) push or MD (Message Data)
pull. In parallel, there is the need for a Hard Real-Time Data Handler for the TSN traffic making
use of the Time Manager and its PTP protocol.

Finally, the Topology Manager provides the TTDB access and services as well as the DNR
(Domain Name Resolver) and TTI (Train Topology Information) services.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3 Page 25 of 113

Figura 5. FDF Dataflow perspective

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 26 of 113

2.4 Behavioural view

In order to understand how the framework works, it is necessary to explain its behaviour by
explaining the three different phases it runs. First of all, during the setup phase, the
configuration is loaded, the shared memories are linked and the logic elements are mapped.
This setup phase can be divided into two phases: Configuration phase and initialisation phase.
Once these preliminary steps are completed, the regular execution phase starts, which means
the Functional Distribution Framework (FDF) begins to execute cyclically.

Configuration Initialization Execution

Figure 6. Behaviour of the FDF in 3 phases.

2.4.1 Configuration phase

The configuration phase covers the loading of the platform configuration (see Figure 7). The
user application initiates the trigger to start the configuration phase. It commands the
FrameworkManager to configure, and this Manager does so through the
ConfigurationManager. A SIL0 process reads the configuration file and then stores it in shared
memory. Then safe processes can read the configuration from this shared memory before
moving to the initialisation phase.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 27 of 113

Figure 7. Configuration phase.

2.4.2 Initialization phase

Once the configuration has been loaded correctly, the initialisation phase begins (see Figure
8). This phase is divided into three sub-phases which deal with the driver initialisation, data
initialisation and function initialisation.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 28 of 113

Figure 8. Initialization phase.

2.4.2.1 Driver initialisation

This section explains how the initialisation of the different driver’s is made (see Figure 9). This
step includes the initialisation of IO and NIC drivers and that for the watchdog and ECU too.

Figure 9. Driver initialisation.

Firstly the IO drivers are initialised. Digital IO and analog input drivers can be found in this set
of drivers. As can be seen in Figure 10, one by one, the FrameworkManager retrieves the
necessary information from the ConfigurationManager and then commands the corresponding
driver, encapsulated under the IODriverManager component, to initialise with this piece of
configuration by the use of its concrete interface.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 29 of 113

Figure 10. Initialization of IO drivers.

The same applies to the initialisation of the NIC driver (see Figure 11). Once the necessary
configuration data is retrieved, the FrameworkManager orders to initialise the driver thorough
the IRTDriver interface.

Figure 11. Initialization of NIC driver.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 30 of 113

In the case of the Watchdog driver, WDDriverManager’s IWDDriver is the interface used to
initialise the Watchdog, as can be seen in Figure 12.

Figure 12. Initialization of watchdog drivers.

Finally, the interface used for the initialisation of ECU Driver is IECUDriver, as shown in the
figure below.

Figure 13. Initialization of ECU driver.

2.4.2.2 Data initialisation

Data needs to be initialised too before starting with the cyclic execution. With data variables,
messages, topology and any other data structure with a given semantic are understood (see
Figure 14).

Figure 14. Data initialisation phase.

When initialising the messages, firstly the corresponding configuration is retrieved for every
existing message store. With this information, the FrameworkManager by the use of shm_open
function opens a shared memory through the ISharedMemory interface. If this memory is
mirrored, then the mirrored shared memory is also opened. On the other hand, as shown in

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 31 of 113

Figure 15, “mmap” function is executed in the case that inter-process or if shared memory
mirror identifier is not empty. Further, mutexes are initialised a shared whenever concurrent
access occurs.

Figure 15. Initialization of Messages.

Similarly, when initialising variables, firstly, firstly the corresponding configuration is retrieved
for every existing variable store. With this information, the FrameworkManager by the use of
shm_open function opens a shared memory through the ISharedMemory interface and
performs the mapping of the memory using the mmap function. In the case that the memory is
mirrored, then the mirrored shared memory is also opened and mapped. In addition, for each
variable configured and if the variable is intended to be read or write, the loop message

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 32 of 113

initialisation is carried out, initialising and configuring mutexes whenever concurrent access
occurs.

Figure 16. Initialization of Variables.

Figure 17 shows the initialisation of the topology manager that retrieves the corresponding
configuration for every existing topology store. Then, the FrameworkManager opens the
shared memory using the shm_open function and maps the topology object to the shared
memory address.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 33 of 113

Figure 17. Initialization of Topology objects.

2.4.2.3 Function initialisation

The missing initialisation task is responsible for the setup of functions (see Figure 18). The
FunctionSchedule is retrieved, which contains each of the existing function in this concrete
instance and then the FunctionManager is initialised. After this point, every function is
initialized by its concrete configuration and once it is ready, it is registered on the
FunctionManager so that it will be able to execute it.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 34 of 113

Figure 18. Function initialisation phase.

As mentioned before, if a synchronisation function has been configured (see Figure 19), its
corresponding configuration is loaded and the ServiceFunction is initialized. When this step is
ready, the function is registered in the FunctionManager and this last gets the unique identifier
of the registered function through the ISynchronizationFunction interface of the
SychronizationManager component.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 35 of 113

Figure 19. Initialization of Synchronization functions.

The initialisation of the health monitoring firstly configures the watchdog timer and then
ServiceFunction is initialised (see Figure 20). When this step is completed, the function is
registered in the FunctionManager and this last gets the unique identifier of the registered
function through the IWDFunction interface of the HealthManager component. Finally, the
FrameworkManager initialises the ITemperatureFunction interface and registers the
temperature function in the FunctionManager.

Figure 20. Initialization of Health functions.

As mentioned before in this document, the digital IO and analog input drivers shall also be
initialized. To that end, the IO interface is configured at first instance, followed by the
initialisation of the ServiceFunction (see Figure 21). After that, the function is registered in the
FunctionManager, obtaining a unique identifier of the registered function through the
IOFunction interface of the IOManager (digital or analog IO).

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 36 of 113

Figure 21. Initialization of IOFunctions.

The message function initialisation, first, the process retrieves the configuration of every parse
function stored (see Figure 22). With this information, the FrameworkManager registers the

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 37 of 113

message function in the FunctionManager, obtaining a unique identifier of the registered
function through the IParseFunction interface of the MessageManager.
Afterwards, the message function initialisation regains the configuration of the compose
functions stored in the shared memory. This information is used by the FrameworkManager to
register the compose function in the FunctionManager and to obtain a unique identifier through
the IComposeFunction interface.

Figure 22. Initialization of MessageFunctions.

Figure 23 shows the initialisation process of the reception and transmission network functions.
First of all, the configuration of those functions is retrieved and the socket function is called
through the SocketManager. In the case of the receive function, a bind function is also
executed. Then, the FrameworkManager uses the retrieved configuration of both functions to
register them in the FunctionManager. Also, unique identifiers for those two functions are
returned to the IReceiveFunctions and ISendFunctions.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 38 of 113

Figure 23. Initialization of NetworkFunctions.

The initialisation of the redundancy functions, first, retrieves the configuration of the
redundancy function stored in the shared memory. Then, the function is registered in the
FunctionManager by the FrameworkManager using obtained configuration, and the
IRedundancyFunction obtains a unique identifier of the registered function (see Figure 24).

Figure 24. Initialization of RedundancyFunctions.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 39 of 113

In this case, as shown in Figure 25, the initialization process of log functions includes different
configurations of the logging interfaces. First, the configuration of the log configuration is
retrieved. This configuration is used by the FrameworkManager to initialise the ILog interface.
Then, the mutex interface provided by the ConcurrencyManager is initialized and configured.
On the other hand, the configuration of the log functions is also retrieved; the function is
initialized and registered in the FunctionManager. Afterwards, a unique identifier is asked by
the FunctionManager and provided to the ILogFunction interface.

Figure 25. Initialization of LogFunctions.

Initializing monitoring functions consist of retrieving its configuration by the
FrameworkManager and initialise the monitoring functions once it is configured (see Figure
26). Then, the socket function, bind and listen to the MonitoringFunction interface calls
functions provided by the SocketManager. After configuring the sockets and using the
configurations retrieved, the monitoring function is registered in the FunctionManager, and a
unique identifier is obtained for the MonitoringFunction interface.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 40 of 113

Figure 26. Initialization of MonitoringFunctions.

The last initialisation regards to the topology functions (see Figure 27). First of all, the
topology’s configuration is retrieved and used to configure topology function. Then, the
topology of the socket is switched to listener mode (UDP), the bind function is called, and the
socket’s topology is again switched to client mode (TCP).

Figure 27. Initialization of TopologyFunctions.

The Deployment Function initialisation consists in getting first the necessary configuration.
Once this is retrieved, the initialise function makes sockets be used to listen to traffic coming
from the SFTP server.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 41 of 113

Figure 28. Initialization of Deployment functions.

The user function initialisation process, first of all, collects the variables configuration stored in
the shared memory and then, restores also the topology-related configuration (see Figure 29).
Once, those processes are completed, the user application interface is initialised and registers
in the FrameworkManager and the FunctionManager, resulting in a unique identifier for the
ApplicationFunction interface.

Figure 29. Initialization of UserFunctions (EXE).

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 42 of 113

The initialisation of DLL based user functions is almost the same as that with EXE files, except
for the fact that the DLL libraries are opened before and closed after the initialisation and
registering of the functions.

Figure 30. Initialization of UserFunctions (DLL).

2.4.3 Execution phase

Once the initialisation phase is over, the cyclic execution begins. In order to explain how the
FDF behaves in this phase, a set of use cases has been selected. Before that, the general
execution behaviour also depicted in Figure 31 is introduced in the following lines:

- User application executed the FrameworkManager
- The FrameworkManager executed a loop cycle where:

o Configures the wait time of ISemaphore interface and posts the semaphore
from the ExecutionManager.

o Retrieves the values from the VariableBoolean1 interface. If the value returned
is “False” the system will not continue executing, else, if the value is “True”, the
system will enter to process execution flag

- In the case, that value returned is “True”, the clock time will be asked to IClock interface,
and Function manager will be executed.

- The FunctionManager will get the execution flag value from the VariableBoolean1
interface.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 43 of 113

o If the value returned is “True” the FunctionManager will get clock time, execute
the function and re-ask for the clock time.

- For every value of the execution, flag returned the FunctionManager will continue
measuring and saving the execution time of the function and setting the variable value.

- Finally, the FrameworkManager gets the clock time and measures and sets the
execution time of the application and also sets the variable value.

Figure 31. Cyclic execution phase.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 44 of 113

In order to better explain the cyclic execution phase of the FDF, a set of specific Use Cases
have been analyzed. These use cases are the following:

2.4.3.1 Data monitoring

Executing data monitoring (see Figure 32) starts with the FunctionManager. This manager
calls to the execute function of the MonitoringManager. Then, the monitoring function accepts
the socket offered by the ISocket interface and receives the socket message that consists of
packets from the IBEDriver interface. After the reception, the monitoring manager gets the
monitored variables from the VariableManager (this is done for each variable) and sends them
through the socket connection to the SocketManager. Then, the socket manager sends the
packets received to the IBEDriver interface of the NICDriverManager.

Figure 32. Data monitoring use case.

2.4.3.2 Data distribution

Data distribution execution composes of six sub-executions that include the message
composing, parsing, value request, reception, transmission and value set, whose execution is
explained in the following lines.

• Message Composing starts with the execution of the IComposeFunction interface from
the FunctionManager (see Figure 33). The IComposeManager gets the value of

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 45 of 113

variables stored in memory and uses those values to build a message through the
IMessage interface.

Figure 33. Message composing use case.

• Message Parsing execution is also initialised by the FunctionManager (see Figure 34).
Then, the message manager gets the message variables through the IMessage
interface (variables in messages) and sets those variables to a memory space (for each
variable in the message).

Figure 34. Message parsing use case.

• Get Message Value locks and unlocks the pthread mutex using the IMutex interface
whenever concurrent access occurs. This execution sequence is shown in Figure 35.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 46 of 113

Figure 35. Get Message use case.

• Message Receiving execution sequence starts with the FunctionManager that
executes the IReceptionFunction interface of the NetworkManager. Then, the reception
interface request data reception to the SocketManager, which at the same time
receives the data through the IRTDriver interface. Finally, values received by the
NetworkManager are set to the MessageManager.

Figure 36. Receive Message use case.

• Message Sending sequence is also executed from the FunctionManager that executed
the NetworkManager (see Figure 37). Then, the ISendFunction interface of the network
manager gets the message values provided by the MessageManager. Finally, those
values are sent to the SocketManager which send them in packets to the
NICDriverManager in packets.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 47 of 113

Figure 37. Send Message use case.

• Send Message Value execution sequence is started by the MessageManager, which
requests the reception of the time clock specification to the TimeManager and locks
and unlocks the mutex through the IMutex interface of the CocurrencyManager
whenever concurrent access occurs (see Figure 38).

Figure 38. Set Message use case.

2.4.3.3 Global synchronisation

Global synchronisation is performed by the SynchronizationManager which is executed by the
FunctionManager and sets the clocking time of the TimeManager with the clocktime received
through the IRTDriver interface of the NICDriverManager. Figure 39 shows the sequential
diagram of the execution the global synchronisation.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 48 of 113

Figure 39. Global time synchronisation use case.

2.4.3.4 Watchdog refreshing

The watchdog timer refreshing is performed by the HealthManager, which execution is
initialised by the FunctionManager (see Figure 40).

Figure 40. Refresh Watchdog use case.

2.4.3.5 Input reading

The following lines define the execution sequence diagrams for analog and digital input
readings.

• Analog Input Reading starts with the execution of the IAIFunction interface of the
IOManager (see Figure 41) and ends with the configuration of the IVariableFloat32
interface using the data received from the IAIDriver interface.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 49 of 113

Figure 41. Read Analog Input use case.

• Digital Input Reading starts with the execution of the IDIFunction interface of the
IOManager (see Figure 42) and ends with the configuration of the IVariableBoolean1
interface using the data received from the IDIDriver interface.

Figure 42. Read Digital Input use case.

2.4.3.6 Output writing

• Digital Output Writing: In this case, the sequence starts with the execution of the
IDOFunction interface of the IOManager (see Figure 41) and ends with the
configuration of the IVariableBoolean1 interface using the data received from the
IDODriver interface. States and qualities are taken into account before writing the
outputs.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 50 of 113

Figure 43. Write Digital Output use case.

• Analog Output Writing: This use case is identical to the digital output writing.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 51 of 113

Figure 44. Write Analog Output use case.

2.4.3.7 Redundancy management

The redundancy manager is launched by the FunctionManager, following the configuration of
the VariableBoolean1 interface and time and concurrency managers (see Figure 45).

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 52 of 113

Figure 45. Redundancy Manager use case.

2.4.3.8 Data logging

Data logging execution sequence gets a string from the VariableManager for each variable
and writes them to the ILog interface of the LogManager. After write process, the ILog interface
gets the clock time through the IClock interface and locks the pthread mutex of the
ConcurrencyManager. Further, the ILog interface opens a file, writes to it and closes it using
the IFile interface. Finally, it unlocks the ptherad mutex of the concurrency manager. Figure 46
shows the sequence diagram of the data logging execution.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 53 of 113

Figure 46. Data logging use case.

2.4.3.9 Data user function execution

The user application is launched by the FunctionManager as shown in Figure 47. After that, it
gets for each input variables the Boolean1 variable. This variable is provided through the
IVariableBoolean1 interface of the VariableManager. Finally, the user application sets for each
output variable the IVariableBoolean1 interface.

Figure 47. Execution of user application use case.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 54 of 113

2.4.3.10 Data topology discovery

Data topology execution sequence (see Figure 48) is executed by the FunctionManager, which
launches the recvfrom function of ITopologyFunction interface. Recvfrom function configures
a socket communication from which receives and transmits data. Once ITopologyFunctiion
interface sends and receives data through the socket, it initialises the ITopology interface and
sets the quality of the topology. Finally, ITopologyFunction sets the values to
IVariableUnsigned8 interface.

Figure 48. Data topology discovery use case.

2.4.3.11 Deadline checking

The deadline checking is also executed by the FunctionManager (see Figure 49). Once
IDeadlineFunction is launched, the FunctionManager gets the unsigned64 and the quality
values from the VariableManager and sets them to the IVariableUnsigned8 interface.

Figure 49. Deadline checking use case.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 55 of 113

2.4.3.12 Disable execution

The execution sequence of IDisableExecutionFunction is executed by the FunctionManager,
which gets the quality, value and default value from the VariableManager and then, sets those
values to the IVariableBoolean1 interface. This execution sequence is represented in Figure
50.

Figure 50. Disable execution use case.

2.4.3.13 Load checking

Once the ILoadFunction is launched (see Figure 51), it gets the load data from the
ECUDriverManager. Further, the FunctionManager sets the value data and the quality of the
IvariableBoolean1 and IVariableUnsigned8 interfaces.

Figure 51. Load checking use case.

2.4.3.14 Output checking

The output checking interface is initialised by the FunctionManager. This manager also gets
the time for each variable of IVariable interface and sets the value data and the quality of the

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 56 of 113

IVariableUnsigned8 interface of VariableManager. Figure 52 represents the sequence diagram
of the OutputChecking sequence.

Figure 52. Output checking use case.

2.4.3.15 Temperature checking

Temperature checking interface gets the temperature values from the IECUDriver interface
(see Figure 53). Then, the FunctionManager sets the value data and the quality of the
IVariableMemoryBoolean1 and IVariabeUnsigned8 interfaces of the VariableManager.

Figure 53. Temperature checking use case.

2.4.3.16 Reset platform

The reset interface of the HealthManager is launched by the FunctionManager (see Figure
54). This reset function gets the value, quality and default value data from the
IVariableBoolean1 interface for each variable and refreshes or not the IWDDriverInterface
depending on the data received from the VariableManager.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 57 of 113

Figure 54. Reset platform use case.

2.4.3.17 Executable and configuration deployment

Once the deployment interface is launched (see Figure 55), it accepts the socket-based
connection provided by the ISocket interface and requires the data reception through the
SocketManager. The data transmitted through the socket becomes from the data packets
provided by the IBEDriver interface. Afterwards, the IDeployment interface sends the new data
values to the ISocketInterface, which updates the packet data values of the
NICDriverManager. Finally, the deployment function sets the IVariableUnsigner8 interface.

Figure 55. Executable and configuration deployment use case.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 58 of 113

Chapter 3 Safety concept

The Safety concept of the TCMS Functional Distribution Framework (FDF) is defined by the
set of measures required to assure the safe, functional operation of the hosted Application
functions. These measures are elicited through a systematic approach, adopted for the
development of the Preliminary Hazard Analysis (PHA) of the FDF.
The FDF PHA has the following main purposes:
 to assess systematically the potential functional deviations from the normal behaviour of

the FDF and to identify the ones that can lead the hosted Applications to a condition
contrary to safety;

 to assess the effects of these hazardous deviations and to group them into a set of
reference (univocally identified) hazards;

 to specify the measures required to assure the safe, functional operation of the
Functional Distribution Framework in spite of the postulated functional deviations, i.e. to
reduce the related risk by preventing its occurrence and/or by mitigating its effects.

The following paragraphs provide:
 the specification of the functional model of the TCMS FDF taken as reference (see §3.1);

 a description of the methodology adopted to develop the FDF PHA (see §3.2).

 a summary of the main results obtained by the FDF PHA (see §3.3), and specifically the
list of measures defining the FDF safety concept.

The Conceptual concept and the Safety concept are developed starting from a common “initial
concept” of the Functional Distribution Framework, but with a degree of independence. The
“Conceptual view” in chapter §2 describes all the physical and logical elements that interact
within the FDF, as further refinement of the above “initial concept” of the Framework.
Further activity (out of the scope of this deliverable) will include the verification that the
proposed physical and logical elements (i.e. Design concept) can implement the safety
measures. Evidence will be provided by a traceability matrix between the FDF requirements
and the safety measures identified during the Hazard Analysis, including countermeasures and
recommendations. Any current misalignment between the lists of services/functions will be
reconciled through at that stage.

3.1 FDF Functional model

The FDF PHA is based on a set of fundamental Functions implementing a set of fundamental
Services provided to the hosted Applications.
Specifically, the PHA is focused on the fundamental FDF functions listed in Table 1.
Through these functions, FDF provides the fundamental services listed in Table 2 to the
Applications.
Table 3 specifies the FDF Functions involved in the implementation of each Service. In general,
a given deviation in the execution of a given function could lead to a relevant deviation of one
or more Services provided by the Framework, and then to a hazardous deviation from the
nominal behaviour of the Application function(s) using Service(s).

Communication Transmission/reception of messages from/to Message Store to/from the
network (remote functions)

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 59 of 113

Monitoring Provision of SIL0 variables accessible remotely

Message function
Decomposition of messages (to share variables between remote functions) in
variables (to share information between application functions) and
composition of messages with variables

Input/Output function Reading of input and updating of variables/setting of outputs according to
variables

Time management Dissemination of the global time from the external global clock

Framework management Generation of variable stores, message stores and register functions as
specified by the Configuration file. Offer API.

Configuration management Reading, parsing, and loading of data in the configuration file

Functions management Execution of registered Functions according to their scheduling plans

Fault management Detection, isolation, notification and reaction to faults, and the recognition of
system status with respect to errors and failures

Table 1: FDF’s fundamental Functions

Initialization It allows the generation and registration of the Application Functions in the
Framework

Global clock synchronization It allows the synchronization of the Application functions in the Framework

Scheduled execution of
applications

It allows the execution of the Application functions in the Framework,
according to their time-based scheduling plan

Data distribution It allows the sharing (writing and reading) of variables among the Application
functions , locally and through a safe and secure communication

IO reading and writing
It allows the Application functions in the Framework to acquire input for the
updating of the related shared variable, and to provide output according to
the related shared variable

Remote monitoring It provides the values of shared variable to a given external client

Table 2: FDF’s fundamental Services

Fundamental
Services

Vs
Functions

Initialization Global clock
synchronisation

Scheduled
execution

of
applications

Data
distribution

IO
reading

and
writing

Remote
monitoring

Communication X X X X

Monitoring X X X

Message
function X X X

Input/Output
function X X X

Time
management

 X X

Framework
management X

Configuration
management X

Functions
management X X

Fault
management X X X X X X

Table 3: FDF’s Functions and Services

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 60 of 113

3.2 FDF PHA Methodology

The Preliminary Hazard Analysis of the Functional Distribution Framework is developed in
three main steps:

 identification of the functional deviations to be assessed (functional failure modes);

 evaluation of the effects of each functional deviation;

 specification of the measures required to assure the safe functional operation of the FDF
and hosted Applications.

A HAZOP1-like approach is used for the systematic identification of the functional
deviations from the nominal behaviour expected by the Functional Distribution Framework.

Deviations are defined through the application of guidewords to each function analysed. Table
4 provides the list of the guidewords and the deviations coming from their application to a
generic function.

Guideword Deviation

No The function is not performed: the output is missed in spite of the input state.

Wrong The function is not correctly performed: the output state is not the expected one for a
defined input state.

Loss of / partially The function is interrupted, only partially performed.

Undue The function is correctly performed but when not required (undue output when there is not
input)

Table 4: FDF PHA, Guidewords and deviations

The effects of individual functional deviation are evaluated with reference to the worst
possible consequences of the Services provided by FDF (Local effect) and on a generic safety-
related Application function (Final effect).

For each potentially hazardous deviation, all the measures required to assure the safe,
functional operation of the FDF, i.e. to avoid, or preventing or mitigating the effects of the
hazardous deviations in the execution of the Application functions, are specified.

The Functional Distribution Framework itself shall implement a subset of measures, i.e. they
will be “covered” by the (safety) requirements of the FDF.
Countermeasures are classified into different categories, which are defined with reference to
structure and content of the Technical Safety Report (section of the Safety case),
as specified by the EN 50129 [4]:
 Assurance of functional operation, which concerns the correct operation of the TCMS FDF

and hosted Applications under failure-free conditions;
 Detection of faults, which concerns the provisions to be implemented for the detection of a

first fault, in a time sufficiently “short"2;

1 HAZard and OPerability analysis (HAZOP) is a structured and systematic methodology for the
assessment of the deviations from the nominal behaviour of a given system. These deviations are
defined by the application of “guide-words””, e.g. to the parameter (pressure-temperature-flow) of a
process plant or to the functions implemented by an equipment / system.
2 I.e. the detection-plus-negation time meets the safety target.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 61 of 113

 Action following detection, which concerns the provisions to be implemented for the
normalisation into a safe state (after the detection of the first fault), in a time sufficiently
short2;

 Independence of items, which concerns internal and external (functional) influences;
 Systematic and Random faults, which concerns the specification of the Safety Integrity

Level (SIL) required to the FDF’s functions and services.

A further set of set of measures - Application conditions - shall be exported to the Application
/ remote functions and the interfaced external technical system(s).
Their fulfilment is essential to guarantee the safe functional operation and behaviour under
faults of the Functional Distribution Framework.
A last set of measures - Recommendations – provides non-mandatory indications about the
implementation of the above countermeasures (e.g. architectural insights …).
The form used for the PHA of the Functional Distribution Framework is provided in the following
tables. It is composed by three parts, which are focused on the results coming from the three
steps of the analysis: Functional failure modes, Failure effects, Measures Specification.
Table 5 shows the first two parts of the FDF PHA form.

FUNCTIONAL FAILURE MODE FAILURE EFFECTS

ID Sub-function Description Guide-word
Deviation

(Functional Failure
mode)

Local effect Final effect System
Hazard ID

Table 5: FDF PHA form, Functional failure mode and Failure effects

Table 6 shows the third part of the FDF PHA form.

MEASURES SPECIFICATION
Correct functional

operation
Detection of

faults
Action following

Detection
 Independence

of Items
Systematic &

Random faults
Application
conditions Recommendations

ID Description ID Description Description Description Description ID Description ID Description

Table 6: FDF PHA form, Measures specification

3.3 FDF PHA Results

The results coming from the PHA developed for the Functional Distribution Framework can be
consulted in ANNEX A: FDF Process Hazard Analysis.
It includes the following sheets: FDF_PHA; FDF_System hazards; FDF Countermeasures;
FDF Countermeasures_pivot; FDF_Application conditions list; FDF_Recommendations list.
The first sheet provides the FDF PHA form in Table 5 and Table 6, filled-in with the results
coming from the failure assessment. The remaining sheets provide summaries of these results.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 62 of 113

The following paragraphs provide the list of “system hazards” identified during the FDF PHA
and the list of Countermeasures, Application conditions and Recommendations defining the
TCMS FDF safety concept.

3.3.1 System Hazards

Table 7 provides the list of “System hazards” identified for the TCMS Functional Distribution
Framework. “System hazards” represent the potential hazardous conditions in the execution
of a generic safety-related Application function, due to deviation(s) in the execution of the FDF
Functions and Services. Specifically, “System hazards” come from the (Final) effect described
in the FDF PHA for each assessed functional failure mode (i.e. deviation). The same table also
specifies the FDF Function(s) and the relevant deviation(s) able to produce each given system
hazard.

ID Hazard FDF function Deviation (Functional Failure mode)

FDF_SH_
01

Potential unsafe
behaviour of the Platform
in the execution of the
safety-related
Application functions due
to error(s) in the
provision of data required
by remote function(s)
(missed, delay, incorrect
data).

Monitoring

Delayed in the provision of variables to remote
function(s)

Incorrect provision of variables to remote function(s)
(incorrect value)

Incorrect provision of variables to remote function(s)
(incorrect variable)

No provision of variables to remote function(s)

FDF_SH_
02

Potential unsafe
behaviour of the Platform
in the execution of the
safety-related
Application functions due
to incorrect management
of fault condition(s).

Fault
management

Ineffective reaction to a detected fault

Interaction of the Fault management services with
other Service or Application functions.

Missed detection of faults during the generation of
the application software code

Missed detection of faults during the run-time
execution of the application software code

Missed detection of faults of (hardware) resources
used by Service and Application functions.

FDF_SH_
03

Potential unsafe
behaviour of the Platform
due to a wrong timing in
the execution of the
safety-related
Application functions

Functions
management

Delayed execution of registered Function(s) with
respect to the scheduling plan(s)

Error in the execution of the function(s) with respect
to the scheduling plan(s) and processes priority.

Incomplete execution of registered Function(s) with
respect to the scheduling plan(s)

Undue execution of registered Functions, when not
required by the scheduling plan(s)

Time
management

Incorrect dissemination of the global time from the
external global clock (to all nodes or a subset of
them)

Missed update of the global time (i.e. according to the
external clock)

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 63 of 113

ID Hazard FDF function Deviation (Functional Failure mode)

No dissemination of the global time from the external
global clock

FDF_SH_
04

Potential unsafe
behaviour of the Platform
in the execution of
safety-related processes
due to a missed or
incorrect acquisition of
controls (input) from the
interfaced object(s).

Input/Output
function

Incorrect reading of input and/or updating of
variables (exchange variable)

Incorrect reading of input and/or updating of
variables (wrong value)

Incorrect timing in the reading of input and/or
updating of variables (delayed or too fast)

No reading of input and/or updating of variables

FDF_SH_
05

Potential unsafe
behaviour of the Platform
in the execution of
safety-related processes
due to an incorrect
exchange of data
between remote
functions.

Communicatio
n

Delayed exchange of messages from remote
functions

Incorrect exchange of messages between remote
functions (including any possible types of
communication error)

Missed exchange of messages between remote
functions

Undue exchange of messages between remote
functions (when not required)

Message
function

Corruption of safety-related data within the
messages exchanged between remote function.

Deletion of messages exchanged between remote
function including safety-related data.

Incorrect composition of messages with variables or
data corruption during reading

Incorrect decomposition of messages into variables
or wrong updating

Insertion within the messages exchanged between
remote function including safety-related data.

Masquerade messages including safety-related data
exchanged between remote function.

No / partial composition of messages with variables

No / partial decomposition of messages into
variables

Repetitions of messages exchanged between
remote function including safety-related data.

Resequencing of messages exchanged between
remote function including safety-related data.

Undue use of message containing non-safety related
data, for safety-related applications.

FDF_SH_
06

Potential unsafe
behaviour of the Platform
in the execution of

Functions
management

No execution of registered function(s) required by the
scheduling plan(s) and process priority

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 64 of 113

ID Hazard FDF function Deviation (Functional Failure mode)

safety-related processes
due to a missed or
incorrect setting of
commands (output)
toward the interfaced
object(s). Input/Output

function

Incorrect setting of outputs according to variables
(exchange variable)

Incorrect setting of outputs according to variables
(wrong value)

Incorrect timing in the setting of outputs according to
variables (delayed or too fast)

No setting of outputs according to variables

FDF_SH_
07

Potential unsafe
behaviour of the Platform
in the execution of the
safety-related processes
due to an incorrect
generation or allocation
of resources or
management of
partitions.

Framework
management

Inadequate allocation of resources to partition, for the
execution of the Application function(s) / process(es)

Inadequate generation of partition and/or allocation
of resources, for the execution of multiple instances
of the Application function(s) / process(es)
No or partial allocation of resources to partition, for
the execution of the Application function(s) /
process(es)
No, partial or delayed generation of partition(s)
(definition of memory space, variable stored,
messages' structure, register functions) specified in
the Configuration file.
Undue access to variables, and related I/O, by
Application function(s) without the required
read/write privilege.

Wrong assignment of read-write privileges and
constraints to Application functions.

Wrong generation of partition(s) (e.g. wrong address
or size of memory, structure of message, stores and
register functions) with respect to the Configuration
file.

FDF_SH_
08

Potential unsafe
behaviour of the Platform
in the execution of
safety-related processes
due to an incorrect
configuration.

Configuration
management

Data corruption during reading, parsing, or loading of
data in the configuration file

Error during reading, parsing, or loading of data in the
configuration file

No / missed / partial reading, parsing, or loading of
data in the configuration file

Reading, parsing, and loading of data from a false or
corrupted configuration file

Loading of data in the configuration file at a wrong
time (e.g. while the FDF has already been
configured).

FDF_SH_
09

Potential unsafe
behaviour during the
execution of safety-
related processes due to
unintended interactions
between the Operating
system and the
Application functions.

Framework
management

Unintended interactions between the Operating
system and the Application functions.

Table 7: FDF PHA, List of System Hazards and relevant FDF Functions and deviations

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 65 of 113

3.3.2 Countermeasures

The following tables provide the set of countermeasures identified during the Preliminary
Hazard Analysis of the Functional Distribution Framework, assuring the proper functional
operation, detection of faults, action following detection, independence of items and defence
against systematic & random faults.
Each table provides the countermeasures specified for each given FDF function. Within each
table, the countermeasures are grouped by the above categories (see §3.2).
Equivalently, the countermeasures can be grouped by different categories and then listed with
reference to the function(s) involved.
Table 8 provides the countermeasures specified for the Communication function.

COMMUNICATION FUNCTION

Classification ID Countermeasures

Correct
functional
operation

HA_COM_01
The Framework shall provide a communication service that makes received
messages available to the Application functions within defined timely bounds
(deterministic receiving).

HA_COM_02

The Framework shall provide a communication service that allows sending
messages within defined timely bounds and with defined periodicity, and
receiving messages within defined maximum delay (deterministic
communication).

HA_COM_03
The Framework shall define, configure, assess and guarantee performance of
communication channels, including priority, throughput, jitter, latency,
response time.

HA_COM_04 The Framework shall implement Communication service without any operation
on the messages' safety layer content.

Detection of
faults HA_COM_05 The Framework shall monitor the communication between remote functions.

Action
following
Detection

HA_COM_06 The Framework shall inform the Application function(s) in case of loss of valid
communication between remote functions.

Table 8: FDF PHA - countermeasures, Communication function

Table 9 provides the countermeasures specified for the Configuration management function.

CONFIGURATION MANAGEMENT

Classification ID Countermeasures

Correct
functional
operation

HA_CONF_01

The Framework shall instantiate messages and variable according to the
Configuration file, which specifies at least: messages' identifier, variables, to
receive or to send, schedule, deadline; variables' identifier, type, range,
default value, deadline.

HA_CONF_08

The Framework shall load the Configuration file during the execution of the
inauguration services and assure that any re-configuration (re-loading of the
Configuration file or loading of a new Configuration file) is performed involving
all the Application functions to be executed.

HA_CONF_02 The Framework shall accept only certified remote Configuration file (coming
from a verified source), protected against data corruption, e.g. by CRC.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 66 of 113

CONFIGURATION MANAGEMENT

Classification ID Countermeasures

Detection of
faults

HA_CONF_03
The Framework shall verify the validity and integrity of the Configuration file,
before and after the end of the inauguration services, e.g. by CRC, MD or
signature created by tooling.

HA_CONF_04
The Framework shall verify the validity of results coming from the
inauguration (Train Topology Database or equivalent data structure) and their
coherence with the Configuration file.

Action
following
Detection

HA_CONF_05

The Framework shall not execute the Application functions in case of any
error detected in the Configuration file or non-valid results coming from the
inauguration or undue operation on the Configuration data, and notify a (fatal)
Fault condition to all the Application function(s) involved.

Independence
of Items HA_CONF_06

The Framework shall assure that re-configuration required for new or
modified Application functions is performed involving all the Application
functions to be executed, or anyway the existing configuration for the
remaining Application functions is not altered.

Systematic &
Random faults HA_CONF_07

The Framework shall read, parse, load and check data in the Configuration
file and configure the platform accordingly, with the same SIL assigned to the
related Application function.

Table 9: FDF PHA - countermeasures, Configuration management

Table 10 provides the countermeasures specified for the Framework management function.

FRAMEWORK MANAGEMENT

Classification ID Countermeasures

Correct
functional
operation

HA_FRM_01

The Framework shall generate Partitions according to the Configuration file of
the Application functions to be executed (which specify the SIL, address and
size of the memory space, and time window inside the global scheduling plan)
and protect each partition’s addressing space through specific memory
protection mechanisms, e.g. by a hardware memory management unit, and
management of access privilege and restrictions.

HA_FRM_02
The Framework shall provide to the partition assigned to an Application
functions the computational resources (e.g. CPU time, memory) required into
the Configuration file in order to meet the (worst-case) timing requirements.

HA_FRM_03

The Framework shall provide to the Application functions the read-write
privilege only to variables (and related input/output, if any) they are allowed to
publish and the read-only privilege to software code, parameters and variables
(and related input, if any) they are subscribed to.

HA_FRM_04
The Framework shall guarantee that Application functions read / write
variables, managing consequently the related platform's I/O, only if the required
privilege is provided.

HA_FRM_05 The Framework shall call Services required for the scheduled execution of the
Application functions.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 67 of 113

FRAMEWORK MANAGEMENT

Classification ID Countermeasures

HA_FRM_06
The Framework shall be able to generate partitions and allocate resources for
Application function(s) requiring multiple instances (for the implementation of a
reliable-safe architecture).

Detection of
faults

HA_FRM_07
The Framework shall detect an invalid operation in the partition attempts by the
Application function(s), e.g. access to a Memory space without the required
reading or writing privilege.

HA_FRM_18
The Framework shall detect the unavailability of Services required for the
scheduled executions of the Application functions and their incorrect call
(different than scheduled)

Action
following
Detection

HA_FRM_08 The Framework shall notify a Fault condition, in case of invalid operation in the
partition attempt (fatal Fault), to all the Application functions involved.

HA_FRM_09
The Framework shall inform the Application functions in case of unavailability
of services required for their scheduled execution, or in case of incorrect call
(different than scheduled).

Independence
of Items

HA_FRM_10

The Framework shall protect and guarantee the independence of multiple
instances of an Application function (e.g. implementing reliable-safe
architecture), e.g. by data diversity (e.g. different time-stamp guarantying data
freshness), timing diversity (instances do not execute simultaneously the same
safety-related software modules), independent (hardware) resources.

HA_FRM_11

The Framework shall guarantee the spatial separation among Partition, in order
to ensure that no process in one partition can modify (without authorization)
software code or application data (i.e.. write to memory data sections, stacks
and code) or manage the I/O assigned to another partition, e.g. through the
protection of their memory addressing space and the management of privilege
and restrictions for variables read / write and for access to I/O.

HA_FRM_12

The Framework shall guarantee spatial separation between memory spaces
containing read-only (including software code and parameters) and read-write
variables, variables with different SIL, variables used by multiple independent
instances of the Application function.

HA_FRM_13

The Framework shall prevent any unintended interactions between the
Operating system activities and the Application functions, through the definition
of formal boundaries and interaction modalities and protecting the Operating
System (data sections, stacks, and code) against undue calls from the
Application and Services functions (e.g. with an invalid handle, object, address
or out of range value; in the wrong context; without the necessary permissions).

Systematic &
Random faults

HA_FRM_14
The Framework shall generate partitions and allocate resources with the same
SIL assigned to the Application functions to be executed, including memories
spaces storing data with the same (unique) SIL.

HA_FRM_15

The Framework shall assign privileges for read-write access to a Memory
space only to independent Application functions with the same SIL. Read-only
access could be assigned to remaining Application functions, if data alteration
during reading can be excluded.

HA_FRM_16
The Framework shall guarantee the read-write access to memory spaces
(according to the assigned privileges) with the same SIL assigned to the
Application function(s) and variables stored.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 68 of 113

FRAMEWORK MANAGEMENT

Classification ID Countermeasures

HA_FRM_17
The Framework shall guarantee the effectiveness of call(s) to Service
function(s) with the same SIL assigned to the Application functions using
Service(s).

Table 10: FDF PHA - countermeasures, Framework management function

Table 11 provides the countermeasures specified for the Functions management function.

FUNCTION MANAGEMENT

Classification ID Countermeasures

Correct
functional
operation

HA_FNM_01

The Framework shall control the execution (start, stop, synchronizing to
external trigger) of Application functions assigned to each individual partition,
through the deterministic management of timers (for sequential execution) and
semaphores (for sequential and concurrent execution), according to their
scheduling plans and to processes priority.

HA_FNM_02
The Framework shall execute an Application function, giving access to memory
resources, only when required by its scheduling plan (and take away access
otherwise).

HA_FNM_03
The Framework shall implement Service functions whose response times allow
the real-time execution of processes and the fulfilment of the most restrictive
response time required by the Application functions to be executed.

HA_FNM_04
The Framework shall implement mechanisms to ensure the execution of real-
time processes in spite of transient temporal violations, e.g. due to inter-module
communications acknowledgements, time-outs, access to memory, interrupts.

HA_FNM_05

The Framework shall avoid interrupts or manage them through the Operating
system only (even if triggered by the Application functions or by hardware),
avoiding any disturb to the time partitioning, i.e. without any change of the time
budget allocation.

Detection of
faults HA_FNM_06

The Framework shall monitor the execution (start, stop, synchronizing to
external trigger) of processes with respect to defined timing bounds for (intra-
partition and inter-partition) communication and processing.

Action
following
Detection

HA_FNM_07
The Framework shall notify a Fault condition, in case of error in the execution
of processes according to the scheduling plans, including the violation of timing
bounds (fatal Fault), to all the Application functions involved.

Independence
of Items HA_FNM_08

The Framework shall implement temporal partitioning, by ensuring that a
process within a given time budget cannot be affected by the actions of any
other task from other partitions, in terms of rate, latency, jitter and duration of
the scheduled access.

Systematic &
Random faults HA_FNM_09

The Framework shall control the execution of processes and the transmission
of messages (according to their scheduling plans) with the same SIL assigned
to the involved Application functions.

Table 11: FDF PHA - countermeasures, Functions management

Table 12 provides the countermeasures specified for the Input/Output function.

INPUT/OUTPUT FUNCTION

Classification ID Countermeasures

Correct
functional
operation

HA_IO_01
The Framework shall provide services that allow the Application function to read
the last valid value stored into an exchange variable and to update this value
according to the status of the related input (coming from the interfaced object).

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 69 of 113

INPUT/OUTPUT FUNCTION

Classification ID Countermeasures

HA_IO_02
The Framework shall provide services that allow the Application function to
write a value into an exchange variable and to update accordingly to the status
of the related output (toward the interfaced object).

HA_IO_03
The Framework shall identify univocally each input / output interfacing external
objects, each exchange variable, and each association between them,
according to the Configuration file(s) of the Application function(s) using them.

HA_IO_04

The Framework shall read and write all the I/O related to the executed
Application function in one cycle only, guarantying that the current value of
every input is stored in the associated exchange variable at the beginning of
each cycle and the current value of every output is set according to the value
stored in the associated exchange variable at the end of each cycle..

Detection of
faults HA_IO_05 The Framework shall detect inconsistency between the values stored into the

exchange variables and the status pf the related platform's input and output.

Action
following
Detection

HA_IO_06

The Framework, in case of any inconsistency between the values stored into
an exchange variable and the status of the related platform's input / output, shall
inform the Application function(s) with read and/or write privilege on this
variable.

Independence
of Items HA_IO_07

The Framework shall be able to provide independence between different (set
of) input / output interfacing external objects (that can be request by Application
function to implement reliable-safe architecture).

Systematic &
Random faults

HA_IO_08
The Framework shall guarantee the updating of each exchange variable
(according to the status of related input) and its reading with the SIL assigned
to the Application function(s) involved and to the specific variable.

HA_IO_09

The Framework shall guarantee the updating the status of each output
(according to value stored into the related exchange variable) and its writing
with the SIL assigned to the Application function(s) involved and to the specific
variable.

HA_IO_10 The Framework shall allow I/O Function to access only to memory space with
the same SIL.

Table 12: FDF PHA - countermeasures, Input/Output function

Table 13 provides the countermeasures specified for the Message function.

MESSAGE FUNCTION

Classification ID Countermeasures

Correct
functional
operation

HA_MSG_01

The Framework shall ensure the integrity of safety-related data exchanged by
communication protocol(s) implementing a safety layer (i.e. a safety code) with
source and/or destination identifiers, information that the transmitter is
operating properly, redundancy field allowing error detection and assuring data
integrity.

HA_MSG_02
The Framework shall ensure the timeliness and sequence of data exchanged
and results of safety algorithms, e.g. by sequence number and/or time stamps
generated by unique identifier related to the cycle (or equivalent measures).

HA_MSG_03

The Framework shall protect the communication of safety-related data against
cyber-attack, ensuring data authenticity and confidentiality, e.g. by software
and/or hardware security mechanisms (e.g. cryptographic mechanisms,
control of access to data).

HA_MSG_04
The Framework shall use protocols for diagnostic, maintenance, configuration
and communication of non-safety related data with different structures than
one(s) used for the communication of safety-related data.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 70 of 113

MESSAGE FUNCTION

Classification ID Countermeasures

HA_MSG_05
The Framework shall guarantee that Message Function read and write the
required variables in a safe way, i.e. variables are read without altering their
value and written according to specification (set during configuration).

Detection of
faults

HA_MSG_06 The Framework shall check the integrity (i.e. information is complete and not
altered) of incoming messages containing safety.

HA_MSG_07 The Framework shall check the timeliness and sequence of messages
containing safety-data, exchanged between remote functions.

HA_MSG_08 The Framework shall check the authenticity of incoming message containing
safety data, exchanged between remote functions.

Action
following
Detection

HA_MSG_09

The Framework and Application functions shall ignore the content and
discharge a message (containing safety-data) when a communication error is
identified through the messages authenticity, integrity, timeliness or sequence
checks.

Independence
of Items HA_MSG_10

The Framework shall implement reactions against errors in the communication
of safety-related data that are functionally independent by any non-trusted
transmission.

Systematic &
Random faults

HA_MSG_11

The Framework shall guarantee the validity of safety related data exchanged
between remote functions, through messages composing and decomposing
into variables carried out by the Message Function, with the same SIL assigned
to the Application function(s) using messages and variables involved.

HA_MSG_12
The Framework shall allow Message Function to access to memory space(s)
containing messages and to memory space(s) containing variables with the
same SIL.

Table 13: FDF PHA - countermeasures, Message function

Table 14 provides the countermeasures specified for the Monitoring function.

MONITORING FUNCTION
Classificatio
n ID Countermeasures

Correct
functional
operation

HA_MO
N_01

The platform shall assign to the Monitoring Function privilege for read-only the
variables stored into SIL0 Memory spaces, or to all the Memory spaces if data
alteration during reading can be excluded, and execute Monitoring services without
any disturb or unintended effects due to other Service and Application functions.

Table 14: FDF PHA - countermeasures, Holding Brake countermeasures

Table 15 provides the countermeasures specified for the Time management function.

TIME MANAGEMENT

Classification ID Countermeasures

Correct
functional
operation

HA_TM_01
The Framework shall synchronize the local computer clock with the external
global clock source and keep it synchronized with a maximum defined deviation
fixed.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 71 of 113

TIME MANAGEMENT

Classification ID Countermeasures

HA_TM_02

The Framework shall not finalize the inauguration and allow operation without a
global time valid (i.e. aligned with the external global clock) and taken as unique
reference by all Service and Application functions, independently from the
partitions execution.

Detection of
faults HA_TM_03 The Framework shall monitor the alignment with the external global clock, the

effectiveness of the global time dissemination and functions synchronization.

Action
following
Detection

HA_TM_04 The Framework shall notify a Fault condition, in case of error in the global time
synchronisation (fatal Fault), to all the Application functions involved.

Independence
of Items HA_TM_05

The Framework shall synchronize the local computer clock with the external
global clock source and keep it synchronized independently from the execution
of the different partitions' processes.

Systematic &
Random faults HA_TM_06

The Framework shall disseminate the global time and/or detect any
misalignment against the external reference time, with the highest SIL assigned
to the Application functions to be executed.

Table 15: FDF PHA - countermeasures, Time management function

Table 16 provides the countermeasures specified for the Fault management function.

FAULT MANAGEMENT

Classification ID Countermeasures

Correct
functional
operation

HA_FLT_01

The Framework shall provide services for the detection of faults of (hardware)
resources used by Service and Application functions, at the power up (i.e. during
the initialization) and periodically during the operation (nominal and degraded
phases), e.g. test memories containing safety related data are totally tested at
the initialization phase and at any new allocation and cyclically at run-time.

HA_FLT_02
The Framework shall provide services for the detection of faults during the
installation of the Applications software (otherwise, to be required to the
Applications).

HA_FLT_03

The Framework shall provide services for the detection of faults during the run-
time execution of the Application function code (otherwise, to be required to the
Application function), e.g. by monitoring the process and data flow and
comparing their state to configured constraints (Program Flow Monitoring), by
checking variables values against predefined range and for plausibility, by
detecting and correcting errors in sensitive information (Error Detecting and
Correcting Codes).

HA_FLT_04
The Framework shall execute services for Fault detection, isolation, notification
and reaction processes with the highest priority, without any disturb or
unintended effects due to other Service and Application functions.

HA_FLT_05

The Framework shall provide services for Fault detection and isolation without
any disturb or unintended effects on the execution and performance (e.g.
latency/jitter, sampling rate or resource reservation) of other Service and
Application functions.

Detection of
faults HA_FLT_06 The Framework shall verify the capability to notify a Fault condition under a

representative set of failure scenarios.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 72 of 113

FAULT MANAGEMENT

Classification ID Countermeasures

Action
following
Detection

HA_FLT_07 The Framework shall inhibit the execution of the Application function in case of
negative results of the initial code integrity check.

HA_FLT_08

The Framework, after the detection of a condition that blocks or threats the
proper execution of Service or Application functions (fatal Fault), shall notify a
Fault condition to all the Application functions involved, in a time that is
compatible with their timely transition into safe state (i.e. not later than the
maximum time for failure detection and negation specified by the Applications).

Independence
of Items HA_FLT_09

The framework shall manage the interaction between Service and Application
functions:
_avoiding that Service functions can force the outputs independently from the
Application function when active, during operation (normal and degraded
phases);
_preventing the access to any off-line service (e.g. validation and verification
support) at the power up, and during the initialization and the operating (nominal
and degraded) phases;
_guarantying the retention of a safe state after a fatal Fault (i.e. condition that
blocks or threats the proper execution of Service or Application functions).

Systematic &
Random faults HA_FLT_10 The Framework shall detect, isolate, notify and react to fault with the highest

SIL assigned to the safety-related Application functions to be executed.

Table 16: FDF PHA - countermeasures, Fault management function

3.3.3 Application conditions

Table 17 provides the list of the Application conditions specified during the Preliminary hazard
Analysis, i.e. measures to be met by the hosted Application functions and by the interfaced
external technical systems, in order to guarantee the safe functional operation and behaviour
under fault conditions of the TCMS Functional Distribution Framework.

ID Application condition

PHA_AC_01

The remote functions exchanging safety-data with and within the Framework shall:
_implement safety protection in the generation of safety-data to be exchange through the
transmission system;
_verify the incoming messages in order to detect erroneous information (transmitter identity,
type, value errors) and time errors (timing, sequencing error);
_discharge a message when a communication error is identified;
_react to the loss of valid communication, including tolerance of message errors if any, as for
the notification of a fatal Fault.

PHA_AC_02

The Application function shall react to the notification of a Fault condition due to error in the
execution of processes according to the scheduling plans (fatal Fault), implementing tolerance
(e.g. timing bounds violated for a limited number of times) if any, by the transition into the specific
safe state.

PHA_AC_03
The Application function shall react to the notification of a Fault condition due to error in the
global time dissemination or functions synchronization (fatal Fault), implementing tolerance (e.g.
errors for a limited number of cycles) if any, by the transition into the specific safe state.

PHA_AC_04 The Application function shall react to the notification of a Fault condition due to invalid operation
in the partition attempts (fatal Fault), by the transition into the specific safe state.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 73 of 113

ID Application condition

PHA_AC_05
The Application function shall react to the notification of a Fault condition due to inconsistency
between the values stored into an exchange variable and the status of the related platform's
input / output (fatal Fault), by the transition into the specific safe state.

PHA_AC_06 Remote functions shall not use variables provided by the Framework’s Monitoring functions (but
Messages) for the execution of safety-related algorithms.

PHA_AC_07

The Application function shall react to any fatal Fault notified by the Framework (i.e. condition
that blocks or threat its proper execution) through the transition and retention into its safe state,
by blocking its safety-related functions and maintaining all outputs to their restrictive state
(typically de-energized), till the execution of a defined maintenance procedure.

PHA_AC_08
The Application function shall react to the notification of a Fault condition due to error detected
in the Configuration file or non-valid results coming from the inauguration (fatal Fault), by the
transition into the specific safe state.

PHA_AC_09 External system shall provide a trusted time reference (external global clock), to be taken as
reference by the Framework in the time synchronization.

Table 17: FDF PHA, Application conditions

3.3.4 Recommendations

Table 18 provides the list of Recommendations specified during the Preliminary hazard
Analysis of the Functional Distribution Framework, which give some (non-mandatory)
indications for the implementation of the countermeasures listed in §3.3.2.

ID Recommendation

PHA_REC_01

It is recommended the compliance of the communication between remote functions with the
EN50159 technical standard on Safety-related communication in transmission systems, for a
Category 3 transmission system risk of unauthorised access to the transmission system not
negligible).

PHA_REC_02

It is recommended to implement safety-related application functions in compliance with the EN
50129 technical standard on Safety related electronic systems for communication, signalling
and processing systems. Specifically about the admitted architecture, according to the SIL
assigned to the application, it is recommended:
_a dual electronic structure based on composite fail-safety with fail-safe comparison or inherent
fail-safe (highly recommended for >SIL2 applications);
_a single electronic structure with self-tests and supervision (recommended for SIL 1 and SIL2
applications).

PHA_REC_03

It is recommended to execute services for faults detection at physical (e.g. temperature,
voltage, memories failures), temporal and logical (e.g. error detecting codes, program
sequence monitoring), and functional (e.g. configuration data integrity, spatial separation
between resources) levels, at the power up (i.e. during the initialization) and periodically during
the operation (nominal and degraded phases).

PHA_REC_04

It is recommended to implement means for the recognition of system status with respect to
errors and failures that might occur or have occurred, supporting faults isolation and graceful
degradation, in order to maintain the more critical Application functions available despite
failures by dropping the less critical functions.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 74 of 113

ID Recommendation

PHA_REC_05

It is recommended to implement Validation and verification support service that allows fault
injection and reaction monitoring, including faults of non-safety related Service and Application
functions, partitioning and isolation mechanism, communication (transmission, reception) and
sharing of network and memory resources, output control, input monitoring, application
execution (timing, memory access, start, stop, throttling).

PHA_REC_06
It is recommended to avoid dynamic reconfiguration of software after a failure , i.e. remapping
the logical architecture back onto the restricted resources left functioning (highly recommended
for SIL3-SIL4 Applications, EN 50128 Table A.3).

PHA_REC_07
It is recommended to assess the implementation of messages retry mechanism by each
Application functions, to improve dependability (tolerance of errors before transition into safe
state) within safety constraints.

Table 18: FDF PHA, Recommendations

3.3.5 CONNECTA functional requirements mapping

The following table provides a mapping of the FDF system requirements as set out by
CONNECTA in “D4.1 – Requirement specification for each sub task”, chapter 4, CTA-T4.1-D-
BTD-002-09, Rev. 9 and the FDF Software requirements that are proposed in Safe4RAIL:

CTA functional
requirements

FDF Software
Component

Remarks

Partition and process
execution (CTA-D4.1-
94)

ExecutionManager The ExecutionManager of the FDF is responsable for handling
the execution of partitions and processes. This manager grants
processing resources to the partitions according to their
Partition scheduling plan and guarantees the spatial separation
between partitions. It is in charge of executing a partition with
a corresponding period and time-interval, parameters which
are provided in the configuration.

It also executes processes according to their Process
scheduling plan, enabling the concurrent or sequential
execution of such. Fault isolation and memory protection are
also provided by this component.

I/O services (CTA-
D4.1-102)

IOManager IOManager provides access to local analog and digital inputs
as well as analog and digital outputs. By the use of this
software component, the inputs are updated only before the
execution of each of the partitions and the outputs written only
after the complete execution of such.

Time services (CTA-
D4.1-110)

SynchronizationManag
er

The required time services are handled by this manager. Each
FDF node is synchronized based on a global clock for each
consist. In order to update the system clock in each of the
FDFs, this manager is able to suspend the execution of a
partition. Besides, partitions can obtain this time by making use
of the Synchronization Manager.

Communication
services (CTA-D4.1-
114)

VariableManager &
MessageManager &

NetworkManager

The communication between processes and partitions in the
same ECU is handled by the VariableManager component
whereas that between remote partitions is managed by the
MessageManager and NetworkManager.

Replicate local
variables on consist

VariableManager &
MessageManager &

NetworkManager

The variables are replicated on the consist network by the use
of the VariableManager to handle variables, MessageManager
to compose messages before being sent through the network

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 75 of 113

network (CTA-D4.1-
117)

and the NetworkManager to actually transport the message in
the network.

Control local variables
based on consist
network variables
(CTA-D4.1-120)

VariableManager &
MessageManager &

NetworkManager

The same Managers as in the case above are used in order to
modify a local output variable based on data received from the
consist network.

Configuration (CTA-
D4.1-123)

ConfigurationManager The ConfigurationManager is used to check and load the
configuration in order to configure the FDF. This configuration
contains every parameter needed in the FDF, for instance: I/O
data, description of variables and their parameters as, for
instance, their default value; partition and process execution
parameters.

Internal state
monitoring and
diagnosis (CTA-D4.1-
132)

MonitoringManager &
LogManager &
HealthManager

The FDF provides an interface to allow an external device
monitor internal variables by means of its MonitoringManager.
The LogManager is used to log internal execution errors and
every set of relevant information. Finally, the HealthManager is
responsible for performing HW Integrity checks, monitoring
partitions and processes and their executions, handling the
refreshing of the watchdog.

Partition debugging
(CTA-D4.1-140)

MonitoringManager The FDF provides an interface to allow an external device
monitor internal variables by means of its MonitoringManager.
By the use of this manager variables can be forced and
unforced for testing purposes.

Safety layer for
consist network
communications
(CTA-D4.1-147)

MessageManager The MessageManager adds the SDT safety layer to the
Messages before being sent throughout the network.

Table 19: CONNECTA requirements – FDF Software Components mapping

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 76 of 113

Chapter 4 Security concept

4.1 Introduction

This section will describe a security concept for the FDF. The analysis made in this document
is a personalised version of the methodology proposed by OWASP foundation3 which allows
customising a security solution based on standard technologies, with the aim of covering the
foundational security requirements described in IEC 62443-3-3 “System security requirements
and security levels” [13] and defining countermeasures subject of these requirements.
According to IEC 62443-2-1 [12], a high and detailed risk assessment is required. This security
concept covers the high-level risk assessment together with the definition of countermeasures.
It consists of examining what might be the impact of vulnerabilities and the likelihood that a
threat might exercise these vulnerabilities but does not consider particular instances of these
vulnerabilities. A representative use-case will be used to show the usage of the FDF, their main
components and their relationships. This use case covers a representative example to
determine assets to be protected, threats to which those assets are exposed, estimation of the
risk and countermeasures.
Although some security countermeasures are already included in the FDF design, for instance,
encryption and access control, this security concept will not consider them initially, but at the
end, they will be evaluated to ensure correspondence to the security level as define in IEC
62443-3-3. The assurance of requirements based on target security level is mapped with IEC
62443-4-2 [14] that is required to get an ISASecure certification. This is the standard
corresponding to a ‘Component’ within the group of standards of IEC 62443, since FDF is
considered a component by definition in IEC 62443.
This security concept will be assessed in next Chapter by TÜV to early identifying possible
issues in terms of security.

4.2 Motivation

In any domain, avionics, automotive, railway an industrial, the related safety standards define
a generic engineering process for the creation of safety mechanisms to mitigate systematic
and random faults in a system. However, these standards do not cover malicious attacks that
can make the system failed. Sometimes safety is described as “protecting people from the
system”, whereas security refers to “protecting the system from people”.
The use of an integrated platform with centralization of functionality means that applications
will share resources (i.e. memory, file system, network interfaces, among others) that were
previously physically separated. All of these can have a great impact on maintaining security
for the system and users. Some applications, for instance, can store sensitive data, such as
train positioning that must not be accessed by other applications. In addition to it, if granted
access, it must be ensured that one application cannot deprive other applications of access to
share resources. If various functional subsystems inside a consist are running on the same
hardware, if a threat actor can get access to one subsystem of the train, it may also be able to
take over another subsystem that can dramatically impact on the availability or result in loss of
human lives. Other security issues in FDF can be gaining full privileges to install malicious

3 OWASP Risk Rating Methodology. Available:
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 77 of 113

software on it and then the injection of false sensor data to affect a safety-related application,
or how to avoid buffer overflow attacks.
These are only some examples to bring out the importance of protecting the FDF against
malicious or unintentional attacks. Further, all threats will be analysed. This security concept
will deal with identifying security issues related to FDF and proposing countermeasures that
mitigate these issues.

4.3 Scope

This security concept will only cover the security issues for the FDF aiming to protect FDF
against any attack. Of course, the key is to address security measures in all layers (Figure 56),
that is, for internal network communication, gateways and external communications.
CONNECTA’s D3.3 Report on RAMS and Security Analysis describes the risk assessment
and security measures that seem to be necessary for supporting a DbD TCMS compliant with
IEC 62443-3, covering networking aspects.
Since the use case of the bogie monitoring system is a distributed application that runs on top
of two FDFs, the concept of end-to-end communication among them is considered but without
any network device between them.

FDF

On-board
communication

Gateways

External
Communication

Figure 56. Logical View of the FDF with internal and external communication

Furthermore, only security aspects that cover the application and middleware services are
considered. Security aspects for application development, operating systems including
hypervisor solutions, hardware considerations, and other general security issues will not be
covered. The following points will not be analysed:

• Application development: it is assumed that applications supplied from third parties will
run on the same hardware, but these may contain vulnerabilities which can be used as
attack vectors to the system.

• Patch management, that is, the maintenance and update of firmware, applications/FDF
will be considered.

• Operating systems: there are three proof-of-concept instantiations: (1) INTEGRITY
based, (2) PikeOS Hypervisor and (3) AUTOSAR-based [1]. (1) INTEGRITY is a real-
time operating system and latest version is certified EAL 6+, High Robustness, (2)
PikeOS achieved a Security Certification Evaluation according to French National
Security Agency (but not Common Criteria EAL), in the case of (3) the AUTOSAR-
based approach it depends on the Operating System host. The security concept will
not address security issues related to the operating system or hypervisor.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 78 of 113

• Hardware used for hosting the Operating System and FDF is beyond the scope.

An analysis of how safety measures can be potential sources of attacks is also beyond the
scope of this security concept. For example, a safe-state condition can be exploitable by
malicious attackers. When a safety-relevant failure condition is detected, the system shall go
to a safe-state, and depending on the hazard nature, that safe-state can be from disabling a
control function to applying emergency brakes to stop the train. Therefore, injecting a safety
fault can launch a Denial-of-Service (DoS) attack.

4.4 Objective

The purpose of this security concept is to derive the justified set of security requirements,
define countermeasures and assurance of 62443-4-2 requirements based on target security
level. The mapping of these requirements with software components is also made in Annex B.
A first step will be the identification of risks by analysing assets, the use case scenario and
threats to obtain the security objectives. These security objectives are objectives needed to
derive a secure design. The security objectives are based on an understanding of what risks
the FDF might be exposed. These objectives will then be mapped to requirements. Next step
will be assessing the severity of each risk if security is compromised. For each objective, an
analysis of potential threats is performed together with an evaluation of the severity of risks
based on Attack Potential and Damage Potential. Finally, security countermeasures will be
proposed if risk exceeds the tolerable risk. IEC 62443-3-3 [13] will be follow since it provides
guidance on countermeasures assigned to a category and a security level. Furthermore,
coverage of the requirements versus countermeasures will be given.
The process is described in the following figure (Figure 57).

Figure 57. Steps in the security concept

Discovering threats is important but being able to estimate the associated severity of the risk
is essential. The risk acceptance level is based on IKL’s expertise for over around 7 years of
experience. This methodology has been developed in collaboration with relevant European
security actors and well-proven in many industrial projects. In Roll2Rail D2.4 and CONNECTA
D3.3 a proposed methodology is given to measure the risk level. Although the parameters in
our methodology are the same covered by these documents, the values assigned are
quantified differently. Since results shall not be compromised at this time, we believe that as a
first iteration, this well-proven methodology will be used and later if needed the required
modifications will be addressed and a comparative analysis between both methodologies can
be carried out.
By following this approach, it will be possible to estimate the severity of all risks and define
countermeasures based on these rating risks: unacceptable risk (red), undesirable (orange),
tolerable (yellow) and negligible (green).

Risk analysis
(Security

objectives)
Risk Assesment

Countermeasures
(Requirements

coverage)

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 79 of 113

4.5 Risk analysis – Security objectives

The purpose of this section is to define and describe the security objectives by identifying risks.
This identification will be based upon the analysis of assets, use case scenarios and threats.
Figure 58 shows the relation between assets and threats and how they are exposed to risks,
based on likely damage and potential of occurrence.
Later, in the following section threats corresponding to each security objective will be
assessed.

Figure 58. Elements for potential risk analysis. Source: Magerit [10].

4.5.1 FDF brief description

This section tries to give a brief summary of the FDF that serves as a basis for the
understanding of what we need to protect. The idea behind it is that this security concept can
be reviewed or assessed separately from the rest of this deliverable. Any reader already
familiar with FDF may want to skip this section.
The goal of FDF is to offer an execution environment that enables:

• Hosting multiple TCMS application functions, safety-critical and non-safety functions
• Ensuring strict time/space partitioning
• Provision of abstraction from location, underlying network protocols and hardware

In order to achieve it, it provides the following internal services:

• Initialization
• Scheduled execution of applications
• Execution of applications of different SIL
• Safe local data distribution
• Safe and secure data distribution
• Transparent IO reading and writing
• Health monitoring
• Remote monitoring
• Maintenance

TCMS applications: TCMS provides a single point of control over all train subsystems related
to three categories: Safety-related functions, Operator Oriented Services, and Customer
Oriented Services, such as:

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 80 of 113

• Bogie Temperature Monitoring
• Door control
• Braking system
• HVAC
• Lightning
• CCTV
• Passenger information system
• Others

The final idea is that train manufacturers or subsystem function providers can build their one
application and run it on top of the FDF. This FDF will provide the following services with a
defined API:

• FDF Services: The code of these components is portable across different
Platforms/OS because the Hardware Access Service and OS Service layers provide
well-defined interfaces.

• OS Services: These components have the same interface but different
implementations for each Platform/OS. They provide either a complete implementation
of the services or an adapter to the services provided by the underlying OS.

• HW Access Services: These components have the same interface but different
implementations for each IO and NIC Hardware. They provide either a complete
implementation of the services or an adapter to the services provided by the underlying
Drivers.

4.5.2 Security dimensions or attributes

A security dimension or attribute is an aspect that allows the value of an asset to be measured
in the sense of the damage that would be caused by its loss of value. These dimensions cover
not only the CIA triad (Confidentiality, Integrity and Availability), but also secondary dimensions
like authenticity, accountability, and non-reputability.

• Availability: Readiness of the services and data to be used when necessary. Lack of
availability causes an interruption of services.

• Integrity: Maintenance of completeness and correctness of data. Without integrity,
information may appear to be altered, corrupt or incomplete.

• Confidentiality: Information must only reach authorised persons. Lack of
confidentiality or secrecy could cause leaks of information as well as unauthorised
accesses.

• Authenticity (who uses the data or services): An entity is who claims to be or
guarantee the source from which the data originated. Against the authenticity of the
information, we can have manipulation of origin or data. Against the authenticity of
users/applications accessing services, we can have spoofing.

• Accountability: Guarantee that it will always be possible to determine who did what
and when. Accountability is essential to analyse incidents, prosecute attackers and
learn from experience. Accountability maps into the integrity of activity logs.

• Non-repudiability: also known as auditability, is the property of two entities not being
able to deny processing of information sent/received.

All these attributes may or may not be required to be met depending on the situation. The risk
analysis will determine the effort is required to achieve them.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 81 of 113

4.5.3 System assets

The objective of this section is to identify the assets composing the system. An asset4 is a
component or function that may be subject to deliberate or accidental attacks that may have
consequences for the organisation. Assets include information, data, services, applications
(software), equipment (hardware), communications, media, facilities, and personnel. There are
several ways to characterise assets.
In this security concept, two types of assets will be only considered: primary assets and
secondary or supporting assets. Critical functions/services and data offered by an application
over the FDF are primary assets; whereas, these are handled or run by supporting assets,
such as software and hardware devices. Generally, secondary assets are the ones that will
potentially receive security countermeasures to protect the primary ones (Figure 59).

Figure 59. Primary and secondary system assets

4.5.4 Use case: Bogie Monitoring System

The analysis of use cases is helpful to state possible threats and then determining the security
objectives. The bogie monitoring system has been selected as an example of an application
running on top of the FDF. This application fulfils the European standard EN15437-2 [27] for
onboard continuous temperature monitoring according to detect failures in axlebox bearings.

4 [UNE 71504:2008]

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 82 of 113

4.5.4.1 General Description

This onboard temperature monitoring is a SIL2 functionality to improve safety and train
operation reliability based on EN15437-2. According to the standard, “failed wheelset bearings
on rolling stock create a hazard to the safe operation of the railway. If the bearing fails while
rolling stock is in service there is the potential for a catastrophic event. One indication that a
bearing is about to fail is a rise in the heat generated by the bearing.” To mitigate the mentioned
hazard, train manufacturers install on-board temperature monitoring systems that detect
hazardous temperature levels and activate predefined alarms accordingly.
This system consists of some sets of temperature sensors, located in wheelset bearings, which
send temperature data to a processing unit. In this unit, temperatures are compared to
predefined thresholds and different alarms are activated according to the hazard severity.

4.5.4.2 Operational Description

There is no a unique way of implementing this bogie monitoring system in the FDF. The chosen
implementation covers a complex and representative example of a distributed application
running in two different control units. Figure 60 describes a logical and physical view of the
Bogie Monitoring System Application (BMSA). The upper part of the figure shows how ECU1
and ECU2 could be placed at the consist or the train backbone level.
Each partition is mapped to a SIL, and it allocates only processes with that SIL, based on
requirements of the architecture. In this case, for the sake of simplicity, it is assumed that only
one process will run in a partition, but both SIL0 processes could have been within a SIL0
partition.

Figure 60. Logical and Physical view of the bogie monitoring systems (BMSA).

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 83 of 113

Processes are represented in order of execution in both ECUs, and each process is mapped
to a piece of memory. Here a brief description starting from left, ECU1:

• SIL0 Configuration: this process is in charge of the reading configuration file for this
application (i.e. variable names, functions ...), which will be saved in “SIL 0
Configuration Memory”. This is valid for both ECUs. This configuration is used for
configuring applications the first time. Then, these processes stay in ‘idle’ mode.

• ECU1’s SIL2 Read temperature values check redundancy and compose a
message: The temperature of bearings is measured using two redundant sensors
in ECU1, the SIL2 process reads and checks these values, and save them in “SIL
2 temperature memory” and composes a message to be sent.

• ECU1’s SIL0 Network: this process is in charge of sending this message to the
ECU2.

• ECU2’s SIL0 Network: receives the message.

• ECU2’s SIL2 parses the message, save the value in “SIL2 Temperature Memory”
compares it with given thresholds and based on the result, a “warm alarm” or a “hot
alarm” can be caused depending on temperature range.

4.5.4.3 Assets Used

Two temperature sensors, shared memory, messages, FDF software components, ECU1 and
ECU2, are the main assets for this use case.
Both ECU1 and ECU2 are applications with a SIL2 partition and SIL0 partition, respectively. In
ACU, the SIL2 partition is responsible for reading and storing temperature values from both
sensors in variables and the SIL0 partition consists of a process to send the corresponding
message to the network. In VCU, the process running on SIL0 partition will decompose this
message in two variables that the Application function will compare these variables together
with threshold temperature values and necessary alarms will be fired if required. The following
table shows each asset involved in this use case together with a description.

Name Functional Description
Computing Two control units ECU1 and ECU2
Communication Remote data distribution with messages between ECU1 and ECU2
Communication interfaces communication interfaces for getting temperature measures
Inputs temperature measures
Outputs Warm or hot alarms
Storage • variables and messages in Shared memory (TemRedVarStrSIL2,

TemRedMsgStr, TemAlrVarStrSIL2, TemAlrMsgStr),
• Configuration files for different processes: TemConfCfg,

TemMainCfg and TemMsgCfg
Application software BMSA in both ECUs
FDF software FDF services provided: IOManager, IODriverManager,

NICDriverManager, FrameworkManager, MemoryManager,
ExecutionManager, MessageManager, VariableStoreManager,
Configuration Manager, FunctionManager, and more

Table 20: Security concept - Assets used

4.5.4.4 Possible Threats/Attacks

This section describes the different threat scenarios in the FDF that occur due to the nature
of the FDF and the end-to-end communication between different FDFs without any

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 84 of 113

networking devices. Security objectives have been derived by analysing FDF architecture,
the use case and threats and they are introduced in the following subsection (Section
4.5.5). Each threat will be mapped to the corresponding security objective, affected asset
and dimensions. The access type for all of them is direct physical access.

Tamper FDF Data

With no authentication, tampering can be done by many means of:
o A compromised application with access to the network to send messages with fake

data. This could tamper with temperature values for attacking the ACU. This could
make the VCU think that the bearings temperature is high and fired a hot alarm to
stop the train.
 Security objectives: SO1: Authorized use of the FDF, SO2: Restricted

access to ECU instructions.
 Assets: outputs, storage, communication
 Dimensions: Integrity, Availability

o Modify system data, for example, temperature thresholds
 Security objectives: SO1: Authorized use of the FDF, SO4: Data

authentication and encryption
 Assets: storage, outputs, Application software
 Dimensions: Integrity, Availability

o Change FDF configuration by modifying corresponding configuration files
 Security objectives: SO1: Authorized use of the FDF, SO4: Data

authentication and encryption
 Assets: storage, outputs, Application software
 Dimensions: Integrity, Availability

o Installing an application and corrupting assigned memory space can lead to access
to the system or interfere with safety functions
 Security objectives: SO1: Authorized use of the FDF, SO3: Application

isolation
 Assets: Application software, storage, outputs
 Dimensions: Integrity, Availability

o A compromised application tampers with stored logging/auditable data
 Security objectives: SO1: Authorized use of the FDF, SO3: Application

isolation
 Assets: Application software, storage, outputs
 Dimensions: Authenticity, Accountability, non-repudiability

Denial of service attacks (DoS)

In general, the following denials of service attacks are envisioned:
o Reduce bandwidth by sending dummy data: using third-party tools it is possible to

bring the system down by flooding it with large amounts of traffic. By overloading
the network with dummy data and clogging up, the communication channels could
affect messaging among other SIL applications. However, the countermeasures will

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 85 of 113

be from the TSN-based DbD, so that excess data sent does not affect other critical
flows. In any case, an authorised use of FDF is required.
 Security objectives: SO1: Authorized use of the FDF
 Assets: Communication
 Dimensions: Availability

o Breaking down the system by sending huge data Again, this countermeasure will
be given by the DbD, but authorized use of the FDF shall be ensured.
 Security objectives: SO1: Authorized use of the FDF
 Assets: Communication
 Dimensions: Availability

o Unauthorized application can delete key storage files; the use of FDF services to
delete sensitive data shall be authorized.
 Security objectives: SO1: Authorized use of the FDF
 Assets: Storage, outputs
 Dimensions: Availability, Integrity

o Unauthorized application can shut down or modify clock synchronisation enabling
a DoS attack
 Security objectives: SO1: Authorized use of the FDF, SO2: Restricted

access to ECU instructions
 Assets: FDF software, outputs
 Dimensions: Availability

Man-in-the-middle attack (MITM)
This refers to intercepting information sent between two FDFs. In general, using third-party
tools, it is possible to listening, intercepting, altering, injecting or replacing messages
between ACU and VCU. FDF should be able to authenticate the source of the
communicated data, encrypt/decrypt outgoing/incoming data and validate that received
data has not been modified in transit.

 Security objectives: SO1: Authorized use of the FDF, SO5: Trusted
Message Exchange

 Assets: communication, storage
 Dimensions: Authentication,

Collect sensitive information
If an authorised application, or by means of accessing memory or intercepting messages,
can track train’s location, train configuration, collect keys and passwords, audit or log data.
The information disclosure threat of non-sensitive data on the VCU or ACU does not result
in any injuries or have any operational impact.

 Security objectives: SO4: Data authentication and encryption, SO5: Trusted
Message Exchange

 Assets: communication, storage
 Dimensions: Confidentiality

Buffer overflow attack

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 86 of 113

Since there is no authentication, implementation errors can be exploited like buffer
overflow, and if an application got affected by this type of attacks, this application should
not affect the others either running on the same FDF or in another one.

 Security objectives: SO3: Application isolation
 Assets: communication, storage
 Dimensions: Availability

CPU manipulation attack
A third-party tool or an application can have access to CPU instructions to shut down the
system, changing the clock, or to manipulate time-based resources to ensure 99% of total
CPU cycles are used by a blocking application that can affect SIL functions.

 Security objectives: SO2: Restricted access to ECU instructions
 Assets: computing
 Dimensions: Availability

False alerts
The use of fake sensors can represent an abnormal behaviour of the system.

 Security objectives: SO6: Trusted input/output devices
 Assets: inputs
 Dimensions: Integrity

4.5.5 Security objectives

The security objectives consist of a set of short and clear statements to get a high-level solution
to the security problem. The following security objectives have been derived from the analysis
of assets, use cases and threads.

• SECURITY OBJECTIVE 1: Authorized use of the FDF: all the applications running
over FDF needs to be authorised since this lack of authentication and authorisation
represents the largest attack surface.

• SECURITY OBJECTIVE 2: Restricted access to ECU instructions: that for example
can change global ECU state, ECU shutdown, clock synchronisation, process isolation
shall be guaranteed. Only selected applications are allowed to request certain
instructions (OS and HW services provided by FDF) that can dramatically affect to the
system, for example, the creation of partitions, application installation, and so on.

• SECURITY OBJECTIVE 3: Application isolation: secure memory partitioning must
enable running different applications in separate memory partitions and avoiding
interference between them. Therefore, protection of data and state of functions during
applications execution will be achieved. In that way, safety applications will not be
corrupted or interfered by non-safety related applications. However, extra measures
must be taken to ensure that an application cannot corrupt its own assigned memory
space. The reason is that an attacker may be able to gain access to the system by this
corrupted memory.

• SECURITY OBJECTIVE 4: Data authentication and encryption are needed for
providing security operation. Configuration files, variables, messages and other data
shall be encrypted. In addition to it, message authentication is needed to confirm that
a message comes from a certain sender and encrypted for confidentiality.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 87 of 113

• SECURITY OBJECTIVE 5: Trusted Message Exchange: any data exchange
operation shall be carried out assuring that involved actors are allowed, and in addition
to it, message authentication is needed to confirm that a message comes from a certain
sender and encrypted for confidentiality. Temperature values sent between ACU and
VCU shall be securitized.

• SECURITY OBJECTIVE 6: Trusted input/output devices: restricting access to
memory and memory-mapped hardware shall be used for controlling hardware
peripherals by reading from and writing to registers or memory blocks mapped to
system memory. Physically disabling or removing connection ports and I/O devices
help prevent disclosure of information or the introduction of malicious code into the
system.

4.6 Security requirements

In this chapter, the security requirements of the FDF are defined. These requirements have
been extracted from D2.5 “Report on requirements of next-generation TCMS framework”, and
these will be mapped with the security objectives already defined and new ones will be derived
in Section 4.8.

Id Text SIL SL

S4R_FDF_409

The framework shall operate accordingly/with regards to confidentiality

• Ensure that data inside the framework cannot be read by an
unauthorised entity: ensure non-disclosure of information/data towards
entities (i.e. users, processes, and device) unless a successful access
authorisation.

N/A N/A

S4R_FDF_410

The framework shall operate accordingly/with regards to authenticity

• Assurance of entities’ identity

• Ensure/verify data source: information/data comes from a verified and
trusted entity (sender)

• Information collected by the framework should be authentic with respect
to origin and time if the framework performs actions based on that
information

• The author of the message, respectively the origin sending entity of the
information/data, shall be evident and traceable at any time (with regards
to non-repudiation)

N/A N/A

S4R_FDF_411

The framework shall operate accordingly/with regards to data integrity

• Support/offer mechanism(s) in order to ensure data integrity for
information collected within the framework.

• Ensure that the information has/have not been modified either in transit
or storage on the route from the sender’s entity to the receiver’s entity.

N/A N/A

S4R_FDF_412

The framework shall provide cryptographic mechanisms and handle
cryptographic objects

• Ensure framework’s security as well as framework’s communication
channel (receiving and transmitting role) by means of secure
cryptographic algorithms

• Management of cryptographic keys (creation, deletion and retention)

• Calculation of cryptographic functions (digital signatures, MACs,
encryption/decryption)

N/A N/A

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 88 of 113

S4R_FDF_413

The framework shall provide a Public Key Infrastructure (PKI)

• Support/ensure the authentication process of entities (with regards to
authenticity)

• Management of certificates (retention and update)

N/A N/A

S4R_FDF_414

The framework shall secure the incoming/outgoing communication
(channel) to the ECUs (Electronic Control Units) against security threats with
regards to confidentiality, authenticity, integrity and availability while
respecting real-time constraints (i.e. predictable latency and low jitter).

N/A N/A

S4R_FDF_415 Support/availability of access control in the network to ensure robustness to
DoS attacks as well as side-channel attacks. N/A N/A

S4R_FDF_416 The framework shall protect stored data against adversaries (with regards
to confidentiality, authenticity and data integrity). N/A N/A

S4R_FDF_417 The framework shall include a mechanism in order to prevent
unknown/unexpected traffic (i.e. admission and access control). N/A N/A

S4R_FDF_418
The framework shall support secure storage for the key(s) and trust
anchor(s) for secure authentication and communication (with regards to
security services and authenticity).

N/A N/A

S4R_FDF_419

The framework shall operate with authenticated entities (ECUs, SW/HW
components) only (with regards to authenticity)

• The framework shall enforce authenticity and integrity of the ECUs in
order to meet/fulfil framework’s security requirements.

• The framework shall enforce authenticity and integrity of the software
components in order to meet/fulfil framework’s security requirements.

N/A N/A

S4R_FDF_420 The framework shall accomplish the need of protecting the data and state of
the functions during execution on an ECU. N/A N/A

S4R_FDF_421 The framework shall accomplish the need of protecting the data and state of
the functions during execution within software components. N/A N/A

S4R_FDF_422
The framework shall ensure the data isolation between different partitions
created and maintained by the framework so that the data in a partition is
accessible only by code running in that partition.

N/A N/A

S4R_FDF_423

The framework shall ensure the isolation of the resource between different
partitions created and maintained by the framework so that the resources
exported by the framework into a partition are accessible only by code
running in that partition.

N/A N/A

S4R_FDF_424 The framework shall provide information flow control that enforces strict
partition isolation so that only explicitly configured interaction is allowed. N/A N/A

S4R_FDF_425 The framework shall ensure that a failure in one partition is not propagated
to other partitions. N/A N/A

S4R_FDF_426 The framework shall ensure that an attack affecting one partition is not
propagated to other partitions. N/A N/A

S4R_FDF_427 The framework shall ensure that security policy enforcement functions are
non-bypassable. N/A N/A

S4R_FDF_428 The framework shall ensure that security policy enforcement functions are
always invoked. N/A N/A

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 89 of 113

S4R_FDF_429 The framework shall ensure that security policy enforcement functions and
the data that configures them cannot be modified without authorisation. N/A N/A

S4R_FDF_430 The framework shall provide the capability to detect, generate and export
audit records for security relevant auditable events. N/A N/A

Table 21: Security Requirements of FDF.

This table is a proof that the security objectives are in line with the system requirements and
cover them. It also demonstrates that there is no requirement for trusted control of input and
output devices.

SO Requirements

SO.1: Authorized use of the
FDF

S4R_FDF_410, S4R_FDF_422, S4R_FDF_423, S4R_FDF_424,
S4R_FDF_427, S4R_FDF_428, S4R_FDF_429, S4R_FDF_430

SO.2: Restricted access to
ECU instructions S4R_FDF_414, S4R_FDF_415, S4R_FDF_425, S4R_FDF_426

SO.3: Application isolation S4R_FDF_410, S4R_FDF_413, S4R_FDF_419, S4R_FDF_427, S4R_FDF_428

SO.4: Data authentication and
encryption

S4R_FDF_409, S4R_FDF_410

S4R_FDF_414, S4R_FDF_416, S4R_FDF_418

SO.5: Trusted Message
exchange S4R_FDF_414, S4R_FDF_417

SO.6: Trusted input/output
devices No requirements

Table 22: Security objective coverage.

4.7 Risk assessment

Before providing any specific solution, a classification is needed to rate and evaluate each of
the risks. Discovering threats is important, but being able to estimate the associated severity
of the risk is as essential. The risk acceptance level is based on IKL’s expertise for over around
7 years of experience. This methodology has been developed in collaboration with relevant
European security actors and well-proven in many industrial projects. In Roll2Rail D2.4 and
CONNECTA D3.3, a proposed methodology is given to measure the risk level. Although the
parameters in our methodology are the same covered by these documents, the values
assigned are quantified differently. Since results shall not be compromised at this time, we
believe that as a first iteration, this well-proven methodology will be used and later if needed
the required modifications will be addressed and a comparative analysis between both
methodologies can be carried out.
Ideally, there would be a universal risk rating system that would accurately estimate all risks
for all organizations. However, a vulnerability that is critical to one organization may not be
very important to another that is why a customized ‘Risk Rating Method’ is used to make the
risk estimation.
For every Security Objective, a list of threats are defined and analysed with two main aspects
in mind, attack potential and damage potential. As mentioned before, categorised values are
based on the normal set of prerequisites used in this kind of developments and how are in
general configured this kind of hardware/software artefacts by system architects.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 90 of 113

From the attack potential’s point of view, the following characteristics have been evaluated:
the elapsed time to perform an attack, the needed expertise, type of information obtained, ease
of access to the target, and the needed equipment/resources to perform the attack. From the
damage potential point of view, the following characteristics have been evaluated: personal
damage level, operative damage and financial damage.
After the risk rating analysis, which applies certain rules and formulas, security estimation is
obtained for both the attack potential and the damage potential. Combining them, a risk value
is obtained for every threat previously identified. The following table shows the results of a
preliminary analysis.
Colours are also used to identify and prioritise potential risk at first sight. The red colour will
identify a non-desired situation where actions should be taken urgently in order to avoid or
mitigate it. For example, the usage of a cryptographic library version that is already known
breakable. Orange is used to mark undesirable situations, and although the potential risk is
high, it can be considered that the system could be safe in normal running. For instance, hard
drive failure, where actions should be taken adding a mirror or redundant disk solutions, but
we can consider that hard drive failure is statistically calculated and hardly happened under
normal circumstances. Yellow is used to identify tolerable situations, for example, not using
session timeout could be used by a hacker to take control over the system modifying or deleting
data, stopping vital processes etc. but if we consider that to access the device terminal is quite
difficult because someone has to pass some security doors inside a guarded building, it is not
crucial to have a terminal in session closed each time people takes a break. Finally, green
colour is used to identify normal and trivial situations.

4.7.1 Security Level Target

The security level target (SL-T) is the level of protection a system must provide against the
threats to a system, and it is a measure of confidence that the system is free from vulnerabilities
and functions in the intended manner. These are the security levels proposed by IEC 62443.

• SL1 - protection against casual or coincidental violation

• SL2 - protection against intentional violation using simple means with low resources,
generic skills and low motivation

• SL3 - protection against intentional violation using sophisticated means with moderate
resources, specific skills and moderate motivation

• SL4 - protection against intentional violation using sophisticated means with extended
resources, specific skills and high motivation

The asset owner should define the security level target based on the risk level that is
considered tolerable. In this case, the analysis of risks (Figure 61) shows that the type of
attacker and means derive a SL3 or SL4. Now an analysis of appropriate countermeasures
corresponding to that SL will be described.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 91 of 113

4.7.2 Determination of the severity of the risk

Damage potential for each threat is been estimated, but train manufacturers from CONNECTA should verify this assesment, and maybe risk value could
changed.

Figure 61. Severity of risk.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 92 of 113

4.8 Security countermeasures

Once the security objectives and security level target have been identified, selected
countermeasures are introduced in order to overcome previously described quantified
risks addressing already defined security requirements and based on security level target.
Attacks identified involved getting physical access to the FDF and high expertise to
perform them. Therefore all countermeasures shall be aligned with a high-Security Level
3 (SL) intentional with moderate resources and moderate motivation or SL4 intentional
using sophisticated means with extended resources and high motivation. In this case, SL3
has been selected, but the asset owner should define which security level target based on
what needs to be protected.
Initially, all countermeasures will be defined, and in next section, they will be mapped with
the assigned countermeasures defined in 62443-4-2 for Embedded Device Security
Assurance (EDSA) certification.
Each countermeasure is linked to specific requirements and security objectives to see
coverage.

4.8.1 Countermeasure 1: Trusted Platform Module (TPM)

C1: A hardware security chip or Trusted Platform Module (TPM) is a tamper-resistance
computing chip that can securely store artefacts used to authenticate, such as, passwords,
certificates and cryptographic keys. The countermeasure would be used in combination
with a crypto USB or smartcard token in which personnel and applications certificates can
be stored to be used for public key authentication, PIN support, user-defined key restriction
(i.e. one-time password, a limited number of usage) and key audit counter (i.e. counts
down with each key usage).
In this website, a list of certified TPMs can be found
https://trustedcomputinggroup.org/membership/certification/tpm-certified-products/ . It is
important to pay attention to the following features to select one:

• at least SHA-256 for hashing because MD5 and SHA1 are broken

• Cryptographic algorithms AES (preferable) or 3DES.

• OTP memory: one-time programmable non-volatile memory, non-volatile storage
for cryptographic keys, secrets, and authorisation information

• Crypto Accelerator

• RNG: Random Number Generator – a strong password generator is required with
high randomness

• UID: Unique Identifier Designator that guarantees to be unique among all identifiers

• Antitamper: with anti-tampering measures (i.e. active shields, anti-DPA) and in
general anti-SCA (Side-Channel Attacks).

• Certification: FIPS or Common Criteria
FDF can use this technology for identification and authentication ECUs and applications,
encryption, secure key storage and integrity verification.
So, due to C1:

https://trustedcomputinggroup.org/membership/certification/tpm-certified-products/

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 93 of 113

• S4R_FDF_409, S4R_FDF_410, S4R_FDF_411, S4R_FDF_412, S4R_FDF_413,
S4R_FDF_414, S4R_FDF_415, S4R_FDF_416, S4R_FDF_418, S4R_FDF_419,
requirements are fulfilled.

• S4R_FDF_409 related to confidentiality, data encryption is used with this
countermeasure

• S4R_FDF_410 and S4R_FDF_411 related to authenticity and data integrity within
FDF, this can be achieved by means of a MAC or digital signature. A MAC is an
algorithm that mathematically combines a key with a hash function to
simultaneously verify both data integrity and message authentication.

• S4R_FDF_412 is related to providing cryptographic mechanisms and handle
cryptographic objects. With the TPM, secure cryptographic functions (digital
signatures, MACs, encryption/decryption) will be used together with secure storage
and management of cryptographic keys (creation, deletion and retention).

• S4R_FDF_413 related to the use of a PKI. A USB token can be used by certification
and registration authorities to generate user and application certificates using an
external PKI.

• S4R_FDF_414 about securing the incoming/outgoing communication (channel) to
the ECUs

• S4R_FDF_415 related to access control can be used with USB or smartcard-based
tokens.

• S4R_FDF_416 related to protect stored data against adversaries

• S4R_FDF_418 related to secure storage for key(s) and trust anchor(s) for secure
authentication and confidentiality

• S4R_FDF_419 related to operate with authenticated entities (ECUs, SW/HW
components

• SO1: Authorized use of the FDF: only previously identified, validated and correctly
authorised user or applications will be the only ones that can use the FDF

• SO2: Restricted access to ECU instructions: TPM will ensure user and application
authentication checking and validating certificates.

• SO4: Data and file authentication and encryption: is also fulfilled because sessions
will be end-to-end protected from the very beginning stages of the communication,
authenticating parties using their personal certificates stored in the TPM, and in the
ongoing phase, encrypting the used data transfer channel using the shared key
certificates.

4.8.2 Countermeasure 2: Password policy

Username and password are required worldwide in order to avoid any user impersonation
and to login a system and communicate between software components. Password
robustness is also required to avoid any password hacking method. Detection of this attack
method, for instance blocking the system when a fixed number of wrong passwords are
typed, is also a way of improving security. Instead of username and password, there could
also be used certificates as credentials in order to demonstrate who it is, person or
application component.
Therefore, covering this aspect of security that is, limiting access to trusted users only to
the FDF/OS with robust passwords, and as consequence restricting and tailoring the

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 94 of 113

accessible functions to them, the global security NIST recommendation5 for digital identity
guidelines shall be ensured.
It is recommended to enable password expiration.
This measure contributes to:

• Requirements: new requirement “USER MANAGEMENT: All users need to be
identified and authenticated for all access to the FDF. Authentication of the identity
of such entities should be accomplished by using methods such as stronger
passwords, tokens or location (physical or logical).” This requirement is mapped to
62443-4-2 requirements related to Access Control (Section 4.9).

• SO1: Authorized use of the FDF: only previously identified, validated and correctly
authorised user or applications will be the only ones that can use the FDF

NIST provides some guidelines for password policies https://pages.nist.gov/800-63-
3/sp800-63b.html?ncid=txtlnkusaolp00000618. For example, some of them:

• The username and password texts in the security component are case-sensitive to
increase the security level.

• The username in the security component must only comprise letters and numbers
and must start with a letter to prevent possible issues with different usage
environments

• The password in the security component can include letters, numbers and
punctuation signs to increase the security level

• The password in the security component must include at least one letter and one
number to increase the security level

• The password text in the security component shall not be visible on the user
interface as this might mean a security vulnerability

• Unsuccessful login attempts shall be considered.

4.8.3 Countermeasure 3: User profiles and application profiles policies

Access to different services and data (including file systems) offered by FDF shall be
restricted based on user and application profiles. Therefore, rules to determine which
actions they are allowed to perform and their restrictions to access resources such as
hardware (e.g., memory, network) or software (execution of programs or commands)
should be taken into account to define and assign proper permissions to different user or
application.
The system must implement a security policy that specifies who or what may access a file
system, and type of access permitted: for example, R-Read, W-Write, X-Execute and
Supervisor/User mode. Moreover, there could be policies to enable: runtime, deployment,
and so on.
The least privilege shall be applied.
Moreover, the following features should be used:

5 800-63-3 Digital identity guidelines, published June 2017, https://doi.org/10.6028/NIST.SP.800-63-3

https://pages.nist.gov/800-63-3/sp800-63b.html?ncid=txtlnkusaolp00000618
https://pages.nist.gov/800-63-3/sp800-63b.html?ncid=txtlnkusaolp00000618

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 95 of 113

1. Session timeout: On the other hand, once the system has granted one session, it
should control if it continues online in the long term, and if not, the session should be
closed after the established time-out for inactivity is triggered.

2. Concurrent session control: Concurrent session control for our use case amounts to
controlling the number of sessions a user can have at the same time.

3. User/Application expiration: The security administrator can indicate if a user profile
expires or not. By means of a smartcard or USB token this renewal can be performed
easily.

This measure contributes to:

• Requirements: S4R_FDF_409

• SO1: Authorized use of the FDF: only previously identified, validated and correctly
authorized user or applications will be the only ones that can use the FDF.

• SO2 : Restricted access to ECU instructions

4.8.4 Countermeasure 4: Role-based access control (RBAC)

A role-based access control shall be used to restricting of FDF access to only authorized
users based on roles and permission. User roles can be assigned depending on specific
operations, such as FDF admin, operator, application function deployer, maintenance
person, and so on. Each role will have different permissions/privileges, for example, the
FDF administrator will have rights to edit system files, access network, edit user profiles
and application profiles, and edit configuration files; whereas the operator will only have
access to diagnostics data.
Roles such as, administrator with full privileges, and other with fewer privileges, such as,
application developer, operator and maintenance person shall be considered. Roles have
to be assigned to users so upon successful authentication of the user, they are authorizes
as having the privileges associated with the assigned role.
Administrator user role shall be able to create other user accounts and manage their
privileges, always applying the least privilege philosophy.
Applications shall be also configured with different privileges, for example, to restrict
network, hardware, operating system based on application’s role.
Users and applications have to be categorised in roles allowing a RBAC security paradigm,
and the least privilege shall be applied.
This measure contributes to:

• Requirements: S4R_FDF_414, S4R_FDF_415, S4R_FDF_416, S4R_FDF_421,
S4R_FDF_427, S4R_FDF_428, S4R_FDF_429

• SO1: Authorized use of the FDF: only previously identified, validated and correctly
authorized user or applications will be the only ones that can use the FDF.

• SO2 : Restricted access to ECU instructions

4.8.5 Countermeasure 5: Encryption

Apart from using secure channels to transfer data, the transferred sensitive data itself
should be encrypted prior to send it. In that way, a double security level is achieved in data

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 96 of 113

transfer channels between an FDF and another system or FDF. If the secured channel is
compromised, as data is encrypted, it could be almost impossible to interpret the data.
In the case of FDF, it needs to be considered whether all data stored and messages shall
be encrypted due to performance reasons, or whether only confidential or sensitive data
that is susceptible of being compromised shall be encrypted.
This measure contributes to:

• Requirements: S4R_FDF_412, S4R_FDF_414, S4R_FDF_416

• SO4 Data authentication and encryption, SO5 Trusted Message Exchange

4.8.6 Countermeasure 6: Session bindings

Once authentication has taken place, it is desirable to continue using application/services
over time without requiring authentication. To facilitate this behaviour, a session may be
started in response to an authentication event, and continue the session until such time
that it is terminated. Session management is preferable over the continual presentation of
credentials. There are several mechanisms for managing a session over time; in this case,
a session binding seems to be desirable. A session secret is shared between application
and service being accessed. This secret binds the two ends of the session, allowing the
application to continue using the service over time. This secret can be given using the
TPM.
This measure contributes to:

• Requirements: S4R_FDF_414, S4R_FDF_417

• SO1: Authorized use of the FDF, SO2 : Restricted access to ECU instructions, SO5
Trusted Message Exchange

4.8.7 Countermeasure 7: Network limited bandwidth

Usually, the first barrier used where data transfer is carried out in some kind of network is
a firewall. A firewall can help filtering connections from known and unknown sources to
reduce the incoming traffic to the system. Nevertheless, due to hardware and/or software
restrictions and specifically in embedded devices, it is not possible to install and use a
firewall as in a desktop computer.
The measure that can be used is to enforce bandwidth limitation at the application or FDF
level, together with the corresponding limitation of bandwidth at the network components.
The use of internal network ports should be tailored and restricted (closed) as well as a
firewall does create specific rules for incoming data. Whitelisting can also be defined to
accept communications from different applications, but everything else is denied. If the
communication does not appear on the whitelist, the communication is rejected. It is
preferable to deny all traffic and permit only that traffic that is necessary. This security
model is known as Deny All Permit Exception. In general, this is a more secure posture
than using a blacklist that permits everything and blocks only traffic that someone decides
is bad. All allowed traffic shall be logged for audit purposes. Although some comments
address the network level, as stated this is beyond the scope of this security concept.
By means of Ethernet TSN, the monitoring and control of traffic is achieved to secure and
protect critical traffic, together with physical network segmentation.
This measure contributes to:

• Requirements: S4R_FDF_417

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 97 of 113

• SO5 Trusted Message Exchange

4.8.8 Countermeasure 8: Asset inventory

An asset inventory of all systems connected to FDF, including inputs, outputs, network,
network devices, network addresses, machine names, purpose of each system, asset
owner responsible for each of them. Authentication of all these devices shall be performed,
for example to network level to determine authorised versus unauthorised systems.
Furthermore, restricting access to memory and memory-mapped hardware shall be used
for controlling hardware peripherals by reading from and writing to registers or memory
blocks mapped to system memory. Physically disabling or removing connection ports and
I/O devices help prevent disclosure of information or the introduction of malicious code into
the system.
This measure contributes to:

• Requirements: S4R_FDF_415

• SO6 Trusted input/output devices

4.8.9 Countermeasure 9: Software-based memory protection unit

The FDF shall prevent read/write access to an application’s memory from non-trusted
applications. Moreover, FDF may prevent non-trusted applications from executing code.
A solution can be on memory partitioning based on Memory Protection Units. INTEGRITY
and PikeOS provide these mechanisms to isolate special and temporal partitions.

• Requirements: S4R_FDF_415

• SO3 Application isolation

4.9 Functional Security Assessment Requirements

Initially, all countermeasures will be defined, and in next section they will be mapped with
the assigned countermeasures defined in 62443-4-2,. This standard applies to FDF
because it satisfies clause 3.1.15 “special purpose device running embedded software
designed to monitor, control or actuate an industrial process directly”.
ISASecure Embedded Device Security Assurance (EDSA) is a certification program that
includes:

• Communication Robustness Testing (CRT)

• Functional Security Assessment (FSA)

• Software Development Security Assessment (SDSA)

These countermeasures will cover only FSA.
IEC 62443 defines seven foundational requirements

• Access control (AC): guarantees that all users (people, software processes and
devices) must successfully identify and authenticate so that they are allowed to
access the system.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 98 of 113

• Use control (UC): The use of a certain equipment, information, or both will be
monitored to prevent unauthorised operation of the device or unauthorised use of
information.

• Data integrity (DI): The integrity of data in certain communication channels is
safeguarded to prevent unauthorised data exchange.

• Data confidentiality (DC): Communication channels are protected from
eavesdropping, in order to guarantee the confidentiality of specific data.

• Restricted dataflow (RDF): The data flow in communication channels is restricted
in order to prevent unauthorised lowering before the disclosure of information.

• Timely response (TRE): In case of violations of IT security there will be a reply
through a notification within a defined period, and corrective activities are initiated.

• Resource availability (RA): The availability of all network resources is ensured for
protecting against service attacks denials.

The complete table of Functional Security Assessment Requirements can be found in ANNEX
B: Functional Security Assessment Requirements table. For each foundational requirement, a
set of functional security assessments is given for FSA (Figure 62). Each requirement is
assigned with a SL to fulfil. At this time, there is no evidence of any component certified for
security level 3 by ISA.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 99 of 113

Figure 62. Excerpt of Functional Security Assessment requirements for ISASecure certification for two
functional requirements ‘Access Control’ and ‘Use Control’.

In ANNEX B: Functional Security Assessment Requirements table, each defined requirement
is mapped to:

• Existence of a requirement in D2.5.

• Countermeasure that is applied to fulfil it.

• ISASecure Level that is required for each system requirement

• Software component that shall cover the associated requirement, or any
clarification.

• Security Objectives

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 100 of 113

4.10 Conclusions and next steps

This section has provided a process to analyse and assess risks to protect FDF, including
security objectives. After this identification and assesment, countermeasures were
described to address all security objectives. In some countermeasures, a selection of
criteria to choose between commercially available solutions was described.
The most important countermeasure is that a certified Trusted Platform Module (TPM) should
be included in the hardware platform to securely store encryption keys, passwords, FDF
authentication, or any other sensitive data.
Apart from that, Section 4.9 describes all system assurance requirements needed to satisfy
level 2-3-4 (there is no distinction among them), and they were mapped to already defined
requirements in D5.2, countermeasures, software components to be in charge of, and security
objectives.
This assurance is not all covered by already defined requirements in D2.5, they were classified
like ‘None’. An update of that deliverable is needed.
As a result of this analysis, new software components were created:

• User Account Manager: the lack of authentication and authorisation represents the
largest attack surface, so there is a need of user account management.

• Crypto Manager: responsible for encryption, decryption, key generation and
management, encoding, decoding.

• Security Monitoring Manager: takes care of the most security functions namely: user
authentication, access authorization, application deployment, session control,
reporting, recovery, and so on.

Furthermore, it was shown that the security objectives would not cover the cases of system
backup and recovery.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 101 of 113

Chapter 5 Assessment of the safety and
security concepts

Within this chapter the assessment of the two concepts related to safety (see Chapter 3) and
security (see Chapter 4) is provided. Section 5.1 contains information about the requirements
and expectations on the FDF design to support safety and security aspects. In part 5.2 the
assessment of the safety concept is shown and in section 5.3 the results for the security
concept is displayed.

5.1 Requirements given to the FDF design

Section 5.1.1 contains basic information about the functionality of the FDF and the expectation
provided by CONNECTA in form of system requirements. The capabilities of the FDF design
derived from the standards is displayed in section 5.1.2 for safety aspects and paragraph 5.1.3
for security.

5.1.1 General

The FDF design shall support and provide all characteristics and functionality that is necessary
to implement train control and monitoring systems (TCMS) on an integrated modular platform
(IMP), like:

- Execution of applications
- Communication between applications
- Control of input/ output lines
- Deployment of applications
- Debugging of applications
- Testing of applications
- Certification of applications

In supporting and providing the above characteristics and functionality the FDF design shall
fulfil the system requirements as set out by CONNECTA in “D4.1 – Requirement specification
for each sub task”, chapter 4, CTA-T4.1-D-BTD-002-09, Rev. 9.
The functional requirements of CTA-T4.1-D-BTD-002-09 relate to:

- Partition and process execution (CTA-D4.1-94)
- I/O services (CTA-D4.1-102)
- Time services (CTA-D4.1-110)
- Communication services (CTA-D4.1-114)
- Replicate local variables on consist network (CTA-D4.1-117)
- Control local variables based on consist network variables (CTA-D4.1-120)
- Configuration (CTA-D4.1-123)
- Internal state monitoring and diagnosis (CTA-D4.1-132)
- Partition debugging (CTA-D4.1-140)
- Safety layer for consist network communications (CTA-D4.1-147)

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 102 of 113

The non-functional requirements of CTA-T4.1-D-BTD-002-09 relate to:
- Implementation support for functions with a safety integrity level (SIL) up to 4 according

to IEC 61508 standard (CTA-D4.1-151).
- Implementation support for functions with a security level (SL) up to 4 according to

IEC 62443-3-3 standard (CTA-D4.1-152 ff.)

5.1.2 Safety

To comply with the non-functional safety requirements (CTA-D4.1-151) the FDF design shall
be capable to fulfil the requirements set up by software safety standards that are common to
the railway domain. The FDF design shall therefore follow or provide the highly recommended
general techniques and means with the rigidity SIL4.
The highly recommended general techniques and means from EN 50657:2017 [11],
EN 50128:2011 [3] and IEC 61508-3:2010 [6] applicable to a software framework as FDF can
be summarized as follows:

- Fault detection and diagnosis shall be used and supported.
- Error detecting codes shall be used and supported.
- Failure assertion programming shall be used and supported.
- Divers programming shall be used or at least supported.
- Backward and forward recovery shall not be used.
- The memorizing of execution paths and the detection and reaction on unlicensed

execution paths shall be supported.
- Artificial intelligence fault correction shall not be used.
- Dynamic reconfiguration of software shall not be used.
- Graceful degradation in the event of failure shall be used and/ or supported.
- Software interfaces shall be fully defined.
- Information encapsulation shall be used and supported. The software design shall follow

a modular approach.
- The timely behaviour of the software shall be guaranteed. This shall be achieved ether

by a cyclic behaviour with guaranteed maximum cycle time or by a time-triggered
architecture. An event-driven architecture shall not be used.

- Resources shall be allocated statically
- Access to shared resources shall be synchronized and the synchronization shall be

configured statically.

5.1.3 Security

To comply with the non-functional security requirements (CTA-D4.1-152 ff.) the FDF design
shall be capable to fulfil the system requirements that are given in the IEC 62443-3-3 standard
up to security level capability 4 (SL-C 4). The system requirements relate to:

- Identification and authentication control (CTA-D4.1-256)
- Use control (CTA-D4.1-260)
- System integrity (CTA-D4.1-262)
- Data confidentiality (CTA-D4.1-261)

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 103 of 113

- Restricted date flow (CTA-D4.1-259)
- Timely response to events (CTA-D4.1-258)
- Resource availability (CTA-D4.1-257)

5.2 Assessment of the safety concept

This section focuses on the assessment of the safety concept of the TCMS Functional
Distribution Framework (FDF). In the first section 5.2.1 the expectation on the concept is
provided. In the following chapter 5.2.2 the approach to fulfil the single requirement or question
as identified during the assessment is shown. The result of the evaluation for each question is
provided in paragraph 5.2.3.

5.2.1 Requirements

Based on the requirements mentioned in section 5.1.1 and 5.1.2 the main questions for a
technical safety concept are:
QSAF1:
Are the safety requirements that are defined sufficient (on a concept level), are they in line with
the system requirements and do they cover the requirements given by the relevant safety
standards?
QSAF2:
Is the safety architecture and design concept capable to fulfil the safety requirements?

5.2.2 Approach and findings

For the safety concept (see Chapter 3), a preliminary hazard analyses (PHA) of the FDF has
been performed. The functional model of the FDF the analyses was based on a set of
dedicated fundamental safety related FDF services (see Table 1) and FDF functions (see
Table 2). System hazards (see Table 7) have been identified, allocated to the different FDF
functions of the functional model and for each function countermeasures have been specified
(see section 3.3.2). As additional result of the PHA application conditions (see section 3.3.3)
and recommendations (see section 3.3.4) have been defined. A mapping of CTA FDF system
requirements to FDF software components has been established, but there is no direct link to
the fundamental FDF services used in the PHA. The safety requirements and the safety
architecture is implicitly available in form of the defined countermeasures, application
conditions and recommendations.
Evaluation on a representative example:
The PHA lead to a potential hazard which has been identified as “FDF_SH_04” (missed or
incorrect input), which is allocated to the FDF “Input/Output function” (see Table 7: FDF PHA,
List of System Hazards and relevant FDF Functions and deviations). Within Table 12: FDF
PHA - countermeasures, Input/Output function the measure to mitigate the risks like
“FDF_SH_04” of the FDF input/output function are specified. In Table 19: CONNECTA
requirements – FDF Software Components mapping the relevant FDF software component for
the FDF input/output function is mapped to the related system requirement to provide
information that the coverage is given.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 104 of 113

5.2.3 Appraisal

Ad. QSAF1:
The safety requirements, available as countermeasures and application conditions, are
defined sufficient on a concept level. They are in line with the system requirements and cover
the requirements given by the relevant safety standards to a sufficient degree for a concept.
Ad. QSAF2:
The mitigation measures are a plausible set of measures to achieve the safety goals. The
architecture is capable to provide a basis for the implementation of the measures compliant to
the safety standards and to fulfil the safety requirements. The assessment did not identify
safety related problems in the available concept data.

5.3 Assessment of the security concept

This section focuses on the assessment of the security concept of the TCMS Functional
Distribution Framework (FDF). In the first section 5.3.1 the expectation on the concept is
provided. In the following chapter 5.3.2 the approach to fulfil the single requirement or question
as identified during the assessment is shown. The result of the evaluation for each question is
provided in paragraph 5.3.3.

5.3.1 Requirements

Based on the requirements mentioned in section 5.1.1 and 5.1.3 the main questions for a
technical safety concept are:
QSEC1:
Are the security requirements that are defined sufficient (on a concept level), are they in line
with the system requirements and do they cover the requirements given by the relevant
security standards?
QSEC2:
Is the security architecture and design concept capable to fulfil the security requirements?

5.3.2 Approach and findings

For the security concept (see Chapter 4), the use case “boogie monitoring system” has been
analysed (see section 4.5.4) to identify possible threats and attacks (see section 4.5.4.4). The
outcome of the analyses was used to derive the relevant security objectives (see section 4.5.5).
With help of the existing security requirements of deliverable D2.5 the newly identified security
objectives have been validated (see section 4.6). In the following a risk assessment to evaluate
the potential severity of the security objective (see section 4.7) was performed. From the
preceding activities, countermeasures (see section 4.8) have been defined and security
requirements established (see section 4.9).
Evaluation on representative examples:
The analyses of the use case lead to a potential threat which has been identified is “Tamper
FDF Data”. Two security objectives have been allocated to this item: “SO1: Authorized use of
the FDF” and “SO2: Restricted access to ECU instructions” (see 4.5.4.4). According to Table
22: Security objective coverage., several requirements of D2.5 “Report on requirements of
next-generation TCMS framework” can be allocated to the threat. As a result of the risk
assessment (see Figure 61. Severity of risk.) both security objectives are mainly rated as
“catastrophic” and “undesirable”. The proposed countermeasures are as defined in chapter 4.8

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 105 of 113

“Trusted Platform Module (TPM)” (C1: see 4.8.1), “Password policy” (C2: see 4.8.2), “User
profiles and application profiles policies” (C3: see 4.8.3), “Role-based access control (RBAC)”
(C4: see 4.8.4), “Software update policy” (C5: see 4.8.5), and “Session bindings” (C7: see
4.8.6). Following the information in chapter 4.9 the countermeasures Cx are partly covered by
the set of existing requirements and several new ones have to be established to comply with
the standard and to fulfil the system requirements.
The analysis of the use case lead to a potential threat which has been identified is “False
alerts”. One security objective has been allocated to this item: “SO6: Trusted input/output
devices” (see 4.5.4.4). According to Table 22: Security objective coverage., no requirement of
D2.5 “Report on requirements of next-generation TCMS framework” can be allocated to the
threat. As a result of the risk assessment (see Figure 61. Severity of risk.) the security objective
is mainly rated as “medium” and “tolerable”. The proposed countermeasure is as defined in
chapter 4.8 “Asset inventory” (C9: see 4.8.8). Following the information in chapter 4.9 the
countermeasure C9 is not covered by an existing requirement and at least a new one has to
be established to comply with the standard and to fulfil the system requirements.

5.3.3 Appraisal

Ad. QSEC1:
The security requirements that are defined are sufficient on a concept level. They are in line
with the system requirements and cover the requirements given by the relevant security
standards to a sufficient degree for a concept.
Ad. QSEC2:
The countermeasures are a plausible set of security measures to achieve the security goals.
The architecture is capable to provide a basis for the implementation of the measures
compliant to the security standards and to fulfil the security requirements. The assessment did
not identify security related problems in the available concept data.
In general:
As stated above, the security requirements are sufficient to meet a concept level. Gaps were
discovered in the course of concept development based on the specific use case. Although
the use case chosen is a representative example since it is covered the most complex case,
in which an application runs in two different control units, the recommendation is to analyse
further use cases in order to discover and close further gaps.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 106 of 113

Chapter 6 Integration of the Framework in the
IMP

In the end, the FDF can be understood as an abstraction layer under the applications which
provides, among other functionalities, memory and execution partitioning, local and remote
data distribution and Input and Output Management. This layer needs to collaborate with the
Drive-by-Data technology, in order to achieve a global synchronisation of the different ECUs
in the train and be able to send and receive packets by the use of Real-Time communication,
mainly for critical data, and Best-Effort communication. Both technologies together conform
what we call the Integrated Modular Platform (IMP) and, in this relationship, the FDF needs to
provide every instance’s configuration to the DbD, which will then suppose a constraint for this
last. DbD will have to collect the configuration of every single FDF instance connected to the
network and design a plan to satisfy every ECUs needs, i.e., concrete data at exact points in
time.

Figure 63. Integrated modular platform overview.

Apart from the configuration dependency, the real challenge when integrating FDF with DbD
will reside in ensuring that the correct operation of the DbD Hardware is achieved when
coupling it with the corresponding End Device or ECU containing the FDF, as well as making
the necessary adaptations to get the correct interaction between the DbD driver and the FDF,
i.e., making both technologies actually be able to communicate with each other. This means
the interfaces must be well-defined and, concretely, the DbD driver must correctly
communicate with the FDF. In such context, it must be given a special attention to the
integration of specific communication middleware (e.g. TRDP), in the end, FDF’s
NetworkManager, with the NICDriverManager component, which will be a wrapper function
providing the services with the DbD driver will offer.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 107 of 113

Chapter 7 Summary and conclusion

As expressed before, this document focuses on the Design, Safety and Security concept
proposed for the TCMS Functional Distribution Framework (FDF). The main goal is to provide
the “Functional Distribution” architecture concept for a mixed criticality embedded platform,
offering an execution environment for distributed TCMS safe and secure applications up to
SIL4.
Chapter 1 explains the motivation for creating the Functional Distribution Framework and
explains its main characteristics of the same. Chapter 2 describes the proposed “Design
concept”, from conceptual, structural and behavioural points of view.
In such a context, starting from a common “initial concept” of the TCMS Framework, Chapter
3 provides the results coming from the Preliminary Hazard Analysis. They include the list the
potential hazardous conditions in the execution of a generic safety-related Application function,
due to deviation(s) in the execution of the FDF’s Functions and Services (i.e. System hazards).
The set of measures required to assure safe functional operation of the hosted Application
functions and safe behaviour under fault conditions, defines the Safety concept of the TCMS
Functional Distribution Framework against the above “System hazards”.
A set of “Countermeasures” has to be implemented by the Framework in order to guarantee
its proper functional operation, detection of faults, action following detection, independence of
items and defence against systematic & random faults. A further set of (non-mandatory)
“Recommendations” provides indications for the implementation of Countermeasures. Further
activity (out of the scope of this deliverable) will verifiy that the proposed physical and logical
elements (i.e. the FDF Design concept) can implement the safety measures (i.e.
Countermeasures and Recommendations). Besides, a final set of “Application conditions” has
to be implemented by the hosted Application functions and by the interfaced external technical
systems.
Chapter 4 comes next, where by the use of a security concept, after analyzing the risks and
assessing them, it has been identified what is necessary to protect. For the security concept,
the Bogie Monitoring System was chosen as a representative example since covered the most
complex case, that is, a distributed application running in two different control units. The
security concept is still valid for simpler TCMS applications. The security objectives give us an
idea about what we need to protect based on the use case and assets analyzed. The security
level target, based on attacker expertise and means, should be 3 or 4, although so far there is
no evidence of any component certified by 62443-4-2 with such a level, level 2 is the maximum.
Countermeasures were introduced to cover security requirements and objectives. The
assurance of these requirements and countermeasures for IEC 62443 certification was also
addressed. As a result, new requirements were placed in D2.5, by the use of the DOORS tool
at Ikerlan ensuring a correct version management and traceability (as described in D2.5
Chapter 2). For instance, new software components such as, “User Account Manager”, “Crypto
Manager” and “Security Monitoring Manager” were introduced in the design and in the design
instantiation (D2.4).
The results of the assessment of the safety concept and the security concept which are
provided in Chapter 3 and Chapter 4, respectively, are shown in Chapter 5. During the activity,
it was evaluated if the concepts and results sufficiently covered the given system requirements
and applicable standards. The assessment did not identify any safety or security related
problem in the available concept data.

On the whole, the Functional Distribution Framework aims to have isolated but integrated
applications instead of dedicated equipment for each train function as well as make possible
to run applications up to SIL4. The benefits are the reduction of the number and complexity of
equipment, the abstraction from the Hardware and communication and the interoperability,

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 108 of 113

which facilitates an easier certification. In fact, this safe functional distribution architecture aims
to achieve an interference freeness which would enable the capability of a modular
certification. The evidence of such capability will be detailed inD2.7, which is confidential. . The
proposed architecture for the FDF allows for portability across different platforms by providing
well-defined interfaces so that the different groups of Software Components can communicate
with each other and also makes the interaction with the Drive-by-Data technology possible in
order to compose the Integrated Modular Platform. Moreover, the architecture is capable to
provide a basis for the implementation of the measures compliant to the safety and security
standards and to fulfill the corresponding safety and security requirements. It is important to
stress that the proposed reference architecture and its Safety and Security concepts were
shared and contrasted with CONNECTA project, made out of representative railway
manufacturers, in order to be in line with their needs and expectations. The members were
constantly informed about the progress of these activities and provided valuable feedback on
them 6.

6 Evidence of such feedback can be found in deliverables that are confidential

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 109 of 113

Chapter 8 List of Abbreviations

ACU Application Control Unit

API Application Programming Interface

BIT Built-in-shelf-Test

BMSA Bogie Monitoring System Application

BSP Board Support Package

CAPEX CAPital EXpenses (initial investment)

CIA Confidentiality, Integrity and Availability

COTS Commercial off-the-shelf

CRC Cyclic Redundancy Check

DbD Drive-by-Data

DI Data Integrity

DNR Domain Name Resolver

DoS Denial of Service

EAL Evaluation Assurance Level

ECN Ethernet Consist Network

ECU Electronic Control Unit

ED End Device

EDS Embedded Device Security Assurance

ERTMS European Railway Traffic Management System

ETB Ethernet Train Backbone

ETBN ETB Node (also referred to as Train Switch)

ETCS European Train Control System

FDF Functional Distribution Framework

FSA Functional Safety Assessment

IMP Integrated Modular Platform

IO Input/Output

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 110 of 113

IP Internet Protocol

LLDP Link Layer Discovery Protocol

MAC Media Access Control

MD Message Data

MMU Memory Management Unit

MVB Multifunction Vehicle Bus

NIST National Institute of Standards and Technology

NWIP New Work Item Proposal

OEM Original Equipment Manufacturer

OS Operating System

PD Process Data

PHA Process hazard Analysis

PTP OC Precision Time Protocol

RA Resource Availability

RAMS Reliability, Availability, Maintainability and Safety

RBAC Role-Based Access Control

RBAC Role-Based Access Control

RDF Restricted Data Flow

RO Read-Only

RW Read/Write

SDT Safe Data Transmission

SIL Safety Integrity Level

SL Security Level

SL-T Security Level Target

SO Security Objective

TCMS Train Control and Management System

TCP Transmission Control Protocol

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 111 of 113

THR Tolerable Hazard Rate

TLV Type, Length Value

TPM Trusted Platform Module

TPM Trusted Platform Module

TRDP Train Real Time Data Protocol

TRE Timely Response

TSN Time Sensitive Network

TTDB Train Topology Database

TTI Train Topology Information

UC Use Control

UDP User Datagram Protocol

V&V Verification & Validation

VCU Vehicle Control Unit

WD WatchDog

WDT WatchDog Timer

WTB Wire Train Bus

XML Extended Markup Language

Table 23: List of Abbreviations

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 112 of 113

Chapter 9 Bibliography

References from introduction section:
[1] AUTOSAR, AUTomotive Open System Architecture. http://www.autosar.org/
[2] CENELEC, EN50126: Railway applications - The specification and demonstration of

Reliability." Availability, Maintainability and Safety (RAMS) (1999).
[3] CENELEC, EN50128: Railway applications – Communications, signalling and processing

systems – Software for railway control and protection systems (2011).
[4] CENELEC, EN50129: Railway applications - Communication, signalling and processing

systems - Safety related electronic systems for signalling." (2003).
[5] CONNECTA project website, https://shift2rail.org/projects/connecta/, retrieved Aug 2017
[6] IEC 61508: Functional safety of electrical/electronic/programmable electronic safety

related systems, 2010.
[7] Safe4RAIL project website, https://safe4rail.eu/, retrieved Aug 2017
[8] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch, "TTEthernet: Time-Triggered Ethernet,"

in Time-Triggered Communication, R. Obermaisser, Ed. CRC Press, Aug 2011.
[9] TSN, Time-Sensitive Networking Task Group, http://www.ieee802.org/1/pages/tsn.html,

retrieved Aug 2017
[10] Magerit, https://www.enisa.europa.eu/topics/threat-risk-management/risk-

management/current-risk/risk-management-inventory/rm-ra-methods/m_magerit.html
[11] CENELEC, EN50657: Railways Applications - Rolling stock applications - Software on

Board Rolling Stock, 2017
[12] IEC62443-2-1: Security for industrial automation and control systems - Part 2-1:

Industrial automation and control system security management system, 2015
[13] IEC62443-3-3: Security for industrial automation and control systems - Part 3-3: System

security requirements and security levels, 2013
[14] IEC62443-4-2: Security for industrial automation and control systems - Part 4-2:

Technical security requirements for IACS components, 2015
[15] CENELEC, “EN 50159:2011. Railway applications - communication, signaling and

processing systems - safety-related communication in transmission systems.,” 2011.
[16] SAE International, “http://standards.sae.org/as6802/,” SAE Standards, Warrendale, PA,

2011.
[17] IEEE 1588 WG, “1588-2008 - IEEE Standard for a Precision Clock Synchronization

Protocol for Networked Measurement and Control Systems,” IEEE Instrumentation and
Measurement Society.

[18] DIN, “DIN VDE V 0831-104. Electric signaling systems for railways - part 104: It security
guideline based on IEC 62443, draft. October, 2015.,” 2015.

[19] DIN, “DIN VDE V 0831-102. Electric signaling systems for railways - part 102: Protection
profile for technical functions in railway signaling, draft. December, 2013.,” 2013.

[20] ISO, “ISO/IEC 15408-1. Information technology - security techniques - evaluation criteria
for it security - part 1: Introduction and general model.”.

[21] IEEE802, “802.1AB-2009 - IEEE Standard for Local and Metropolitan Area Networks--
Station and Media Access Control Connectivity Discovery”.

[22] UNISIG, “STM FFFIS Safe Time Layer - SUBSET-056,” UNISIG, 2016.
[23] CENELEC, “EN 50126-1:2015. Railway applications - the specification and

demonstration of reliability, availability, maintainability and safety (rams),” 2015.
[24] CENELEC, “EN 50129:2016. Railway applications - communication, signaling and

processing systems - safety related electronic systems for signaling,” 2016.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

 Security Concepts, and Assessment

Safe4RAIL D2.3 Page 113 of 113

[25] S. Morris and D. Nicholls, Reliability Toolkit: Commercial Practices Edition: A Practical
Guide for Commercial Products and Military Systems Under Acquisition Reform, Rome
NY: Reliability Analysis Center, 1995.

[26] “D4.1 – Requirement specification for each sub task”, CTA-T4.1-D-BTD-002-09, Rev. 9.
[27] EN15437-2. “Railway applications. Axlebox condition monitoring. Interface and design

requirements. Performance and design requirements of on-board systems for
temperature monitoring”, 2012.

Sub-function Description Guide-word
Deviation / Functional Failure

mode
Local effect Final effect Hazard ID ID Description ID Description ID Description ID Description ID Description ID Description ID Description

Communication

transmission / reception of
messages from/to
Message Store to/from
network (remote
functions)

No / loss of / partial
Missed exchange of messages
between remote functions

Missed exchange of data
between remote functions
during the Application
functions execution or for
remote monitoring.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_COM
_03

The Framework shall define, configure, assess
and guarantee performance of communication
channels, including priority, throughput, jitter,
latency, response time.

HA_CO
M_05

The Framework shall monitor the
communication between remote
functions.

HA_COM
_06

The Framework shall inform the
Application function(s) in case of loss of
valid communication between remote
functions.

HA_COM_
04

The Framework shall implement
Communication service without any
operation on the messages' safety layer
content.

- -
PHA_REC_
01

It is recommend the compliance of the
communication between remote functions
with the EN50159 technical standard on
Safety-related communication in
transmission systems, for a Category 3
transmission system risk of unauthorised
access to the transmission system not
negligible).

Communication

transmission / reception of
messages from/to
Message Store to/from
network (remote
functions)

Wrong

Incorrect exchange of
messages between remote
functions (including any
possible types of
communication error)

Exchange of incorrect data
between remote functions
during the Application
functions execution or for
remote monitoring.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_01

The Framework shall ensure the integrity of
safety-related data exchanged by
communication protocol(s) implementing a
safety layer (i.e. a safety code) with source
and/or destination identifiers, information that
the transmitter is operating properly,
redundancy field allowing error detection and
assuring data integrity.

HA_MSG
_06

 The Framework shall check the
integrity (i.e. information is complete
and not altered) of incoming messages
containing safety.

HA_COM
_06

The Framework shall inform the
Application function(s) in case of loss of
valid communication between remote
functions.

HA_COM_
04

The Framework shall implement
Communication service without any
operation on the messages' safety layer
content.

- -

Communication

transmission / reception of
messages from/to
Message Store to/from
network (remote
functions)

Delayed
Delayed exchange of
messages from remote
functions

Delayed exchange of data
between remote function
during the application
functions execution.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_COM
_02

The Framework shall provide a communication
service that allows sending messages within
defined timely bounds and with defined
periodicity, and receiving messages within
defined maximum delay (deterministic
communication).

HA_MSG
_07

The Framework shall check the
timeliness and sequence of messages
containing safety-data, exchanged
between remote functions.

HA_COM
_06

The Framework shall inform the
Application function(s) in case of loss of
valid communication between remote
functions.

HA_COM_
04

The Framework shall implement
Communication service without any
operation on the messages' safety layer
content.

- -

Communication

transmission / reception of
messages from/to
Message Store to/from
network (remote
functions)

Undue
Undue exchange of messages
between remote functions
(when not required)

Undue exchange or remote
distribution of data to remote
functions, not required by the
execution of the Application
functions or for remote
monitoring.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_02

The Framework shall ensure the timeliness and
sequence of data exchanged and results of
safety algorithms, e.g. by sequence number
and/or time stamps generated by unique
identifier related to the cycle (or equivalent
measures).

HA_MSG
_07

The Framework shall check the
timeliness and sequence of messages
containing safety-data, exchanged
between remote functions.

HA_MSG_
09

The Framework and Application functions
shall ignore the content and discharge a
message (containing safety-data) when
a communication error is identified
through the messages authenticity,
integrity, timeliness or sequence checks.

HA_COM_
04

The Framework shall implement
Communication service without any
operation on the messages' safety layer
content.

- -

Monitoring
provision of SIL0 variables
accessible remotely

No / partial
No provision of variables to
remote function(s)

Remote function cannot be
properly executed due to
missed data

Potential unsafe behaviour of the Platform
in the execution of the safety-related

Application functions due to error(s) in the
provision of data required by remote

function(s) (missed, delay, incorrect data).

FDF_SH_01
HA_MON
_01

The platform shall assign to the Monitoring
Function privilege for read-only the variables
stored into SIL0 Memory spaces, or to all the
Memory spaces if data alteration during
reading can be excluded, and execute
Monitoring services without any disturb or
unintended effects due to other Service and
Application functions.

- - - - - - - -
PHA_AC_
06

Remote functions shall not use variables provided by the Framework’s
Monitoring functions (but Messages) for the execution of safety-related
algorithms.

Monitoring
provision of SIL0 variables
accessible remotely

Wrong
Incorrect provision of
variables to remote
function(s) (incorrect value)

Remote function cannot be
properly executed due to
incorrect data

Potential unsafe behaviour of the Platform
in the execution of the safety-related

Application functions due to error(s) in the
provision of data required by remote

function(s) (missed, delay, incorrect data).

FDF_SH_01
HA_MON
_01

The platform shall assign to the Monitoring
Function privilege for read-only the variables
stored into SIL0 Memory spaces, or to all the
Memory spaces if data alteration during
reading can be excluded, and execute
Monitoring services without any disturb or
unintended effects due to other Service and
Application functions.

- - - - - - - -
PHA_AC_
06

Remote functions shall not use variables provided by the Framework’s
Monitoring functions (but Messages) for the execution of safety-related
algorithms.

Monitoring
provision of SIL0 variables
accessible remotely

Delayed
Delayed in the provision of
variables to remote
function(s)

Remote function cannot be
properly executed due to
missed data

Potential unsafe behaviour of the Platform
in the execution of the safety-related

Application functions due to error(s) in the
provision of data required by remote

function(s) (missed, delay, incorrect data).

FDF_SH_01
HA_MON
_01

The platform shall assign to the Monitoring
Function privilege for read-only the variables
stored into SIL0 Memory spaces, or to all the
Memory spaces if data alteration during
reading can be excluded, and execute
Monitoring services without any disturb or
unintended effects due to other Service and
Application functions.

- - - - - - - -
PHA_AC_
06

Remote functions shall not use variables provided by the Framework’s
Monitoring functions (but Messages) for the execution of safety-related
algorithms.

Monitoring
provision of SIL0 variables
accessible remotely

Undue
Incorrect provision of
variables to remote
function(s) (incorrect variable)

Remote function cannot be
properly executed due to
incorrect data

Potential unsafe behaviour of the Platform
in the execution of the safety-related

Application functions due to error(s) in the
provision of data required by remote

function(s) (missed, delay, incorrect data).

FDF_SH_01
HA_MON
_01

The platform shall assign to the Monitoring
Function privilege for read-only the variables
stored into SIL0 Memory spaces, or to all the
Memory spaces if data alteration during
reading can be excluded, and execute
Monitoring services without any disturb or
unintended effects due to other Service and
Application functions.

- - - - - - - -
PHA_AC_
06

Remote functions shall not use variables provided by the Framework’s
Monitoring functions (but Messages) for the execution of safety-related
algorithms.

FUNCTIONAL FAILURE MODE FAILURE EFFECTS

COUNTERMEASURES SPECIFICATION

Correct functional operation Detection of faults Action following Detection Independence of Items Systematic & Random faults Application conditions Recommendations

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

ANNEX A: FDF Process Hazard Analysis

This annex contains the complete table of the Functional Distribution Framework Process Hazard Analysis. Despite the size, it can be zoomed in order to check the table more closely.

Table 24: FDF Process Hazard Analysis

Safe4RAIL D2.3

Sub-function Description Guide-word
Deviation / Functional Failure

mode
Local effect Final effect Hazard ID ID Description ID Description ID Description ID Description ID Description ID Description ID Description

FUNCTIONAL FAILURE MODE FAILURE EFFECTS

COUNTERMEASURES SPECIFICATION

Correct functional operation Detection of faults Action following Detection Independence of Items Systematic & Random faults Application conditions Recommendations

Message function

decomposition of
messages (to share
variables between remote
functions) in variables (to
share information between
application functions) and
composition of messages
with variables

No / loss of / partial
No / partial decomposition of
messages into variables

Missed or partial updating of
variables according to the
incoming messages and missed
or incorrect execution of
Application function(s).

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_05

The Framework shall guarantee that Message
Function read and write the required variables
in a safe way, i.e. variables are read without
altering their value and written according to
specification (set during configuration).

HA_MSG
_07

The Framework shall check the
timeliness and sequence of messages
containing safety-data, exchanged
between remote functions.

HA_MSG_
09

The Framework and Application functions
shall ignore the content and discharge a
message (containing safety-data) when
a communication error is identified
through the messages authenticity,
integrity, timeliness or sequence checks.

HA_MSG_
10

The Framework shall implement
reactions against errors in the
communication of safety-related data
that are functionally independent by any
non-trusted transmission.

HA_MS
G_11

The Framework shall guarantee the validity of safety
related data exchanged between remote functions,
through messages composing and decomposing into
variables carried out by the Message Function, with
the same SIL assigned to the Application function(s)
using messages and variables involved.

PHA_AC_
01

The remote functions exchanging safety-data with and within the Framework
shall:
_ implement safety protection in the generation of safety-data to be exchange
through the transmission system;
_ verify the incoming messages in order to detect erroneous information
(transmitter identity, type, value errors) and time errors (timing, sequencing
error);
_discharge a message when a communication error is identified;
_ react to the loss of valid communication, including tolerance of message
errors if any, as for the notification of a fatal Fault.

PHA_REC_
01

It is recommend the compliance of the
communication between remote functions
with the EN50159 technical standard on
Safety-related communication in
transmission systems, for a Category 3
transmission system risk of unauthorised
access to the transmission system not
negligible).

Message function

decomposition of
messages (to share
variables between remote
functions) in variables (to
share information between
application functions) and
composition of messages
with variables

No / loss of / partial
No / partial composition of
messages with variables

Missed exchange of data
between remote functions, and
incorrect execution of the
Application function(s).

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_05

The Framework shall guarantee that Message
Function read and write the required variables
in a safe way, i.e. variables are read without
altering their value and written according to
specification (set during configuration).

HA_MSG
_07

The Framework shall check the
timeliness and sequence of messages
containing safety-data, exchanged
between remote functions.

HA_MSG_
09

The Framework and Application functions
shall ignore the content and discharge a
message (containing safety-data) when
a communication error is identified
through the messages authenticity,
integrity, timeliness or sequence checks.

HA_MSG_
10

The Framework shall implement
reactions against errors in the
communication of safety-related data
that are functionally independent by any
non-trusted transmission.

HA_MS
G_11

The Framework shall guarantee the validity of safety
related data exchanged between remote functions,
through messages composing and decomposing into
variables carried out by the Message Function, with
the same SIL assigned to the Application function(s)
using messages and variables involved.

PHA_AC_
01

The remote functions exchanging safety-data with and within the Framework
shall:
_ implement safety protection in the generation of safety-data to be exchange
through the transmission system;
_ verify the incoming messages in order to detect erroneous information
(transmitter identity, type, value errors) and time errors (timing, sequencing
error);
_discharge a message when a communication error is identified;
_ react to the loss of valid communication, including tolerance of message
errors if any, as for the notification of a fatal Fault.

Message function

decomposition of
messages (to share
variables between remote
functions) in variables (to
share information between
application functions) and
composition of messages
with variables

No / loss of / partial
(Msg Deletion)

Deletion of messages
exchanged between remote
function including safety-
related data.

Incorrect data distribution and
execution of the Application
function(s).

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_02

The Framework shall ensure the timeliness and
sequence of data exchanged and results of
safety algorithms, e.g. by sequence number
and/or time stamps generated by unique
identifier related to the cycle (or equivalent
measures).

HA_MSG
_07

The Framework shall check the
timeliness and sequence of messages
containing safety-data, exchanged
between remote functions.

HA_MSG_
09

The Framework and Application functions
shall ignore the content and discharge a
message (containing safety-data) when
a communication error is identified
through the messages authenticity,
integrity, timeliness or sequence checks.

HA_MSG_
10

The Framework shall implement
reactions against errors in the
communication of safety-related data
that are functionally independent by any
non-trusted transmission.

HA_MS
G_11

The Framework shall guarantee the validity of safety
related data exchanged between remote functions,
through messages composing and decomposing into
variables carried out by the Message Function, with
the same SIL assigned to the Application function(s)
using messages and variables involved.

PHA_AC_
01

The remote functions exchanging safety-data with and within the Framework
shall:
_ implement safety protection in the generation of safety-data to be exchange
through the transmission system;
_ verify the incoming messages in order to detect erroneous information
(transmitter identity, type, value errors) and time errors (timing, sequencing
error);
_discharge a message when a communication error is identified;
_ react to the loss of valid communication, including tolerance of message
errors if any, as for the notification of a fatal Fault.

Message function

decomposition of
messages (to share
variables between remote
functions) in variables (to
share information between
application functions) and
composition of messages
with variables

Wrong
Incorrect decomposition of
messages into variables or
wrong updating

Incorrect updating of variables
according to the incoming
messages and missed or
incorrect execution of
Application function(s).

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_05

The Framework shall guarantee that Message
Function read and write the required variables
in a safe way, i.e. variables are read without
altering their value and written according to
specification (set during configuration).

HA_MSG
_07

The Framework shall check the
timeliness and sequence of messages
containing safety-data, exchanged
between remote functions.

HA_MSG_
09

The Framework and Application functions
shall ignore the content and discharge a
message (containing safety-data) when
a communication error is identified
through the messages authenticity,
integrity, timeliness or sequence checks.

HA_MSG_
10

The Framework shall implement
reactions against errors in the
communication of safety-related data
that are functionally independent by any
non-trusted transmission.

HA_MS
G_11

The Framework shall guarantee the validity of safety
related data exchanged between remote functions,
through messages composing and decomposing into
variables carried out by the Message Function, with
the same SIL assigned to the Application function(s)
using messages and variables involved.

PHA_AC_
01

The remote functions exchanging safety-data with and within the Framework
shall:
_ implement safety protection in the generation of safety-data to be exchange
through the transmission system;
_ verify the incoming messages in order to detect erroneous information
(transmitter identity, type, value errors) and time errors (timing, sequencing
error);
_discharge a message when a communication error is identified;
_ react to the loss of valid communication, including tolerance of message
errors if any, as for the notification of a fatal Fault.

Message function

decomposition of
messages (to share
variables between remote
functions) in variables (to
share information between
application functions) and
composition of messages
with variables

Wrong
Incorrect composition of
messages with variables or
data corruption during reading

Incorrect data distribution and
execution of the Application
function(s).

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_05

The Framework shall guarantee that Message
Function read and write the required variables
in a safe way, i.e. variables are read without
altering their value and written according to
specification (set during configuration).

HA_MSG
_07

The Framework shall check the
timeliness and sequence of messages
containing safety-data, exchanged
between remote functions.

HA_MSG_
09

The Framework and Application functions
shall ignore the content and discharge a
message (containing safety-data) when
a communication error is identified
through the messages authenticity,
integrity, timeliness or sequence checks.

HA_MSG_
10

The Framework shall implement
reactions against errors in the
communication of safety-related data
that are functionally independent by any
non-trusted transmission.

HA_MS
G_11

The Framework shall guarantee the validity of safety
related data exchanged between remote functions,
through messages composing and decomposing into
variables carried out by the Message Function, with
the same SIL assigned to the Application function(s)
using messages and variables involved.

PHA_AC_
01

The remote functions exchanging safety-data with and within the Framework
shall:
_ implement safety protection in the generation of safety-data to be exchange
through the transmission system;
_ verify the incoming messages in order to detect erroneous information
(transmitter identity, type, value errors) and time errors (timing, sequencing
error);
_discharge a message when a communication error is identified;
_ react to the loss of valid communication, including tolerance of message
errors if any, as for the notification of a fatal Fault.

Message function

decomposition of
messages (to share
variables between remote
functions) in variables (to
share information between
application functions) and
composition of messages
with variables

Wrong (Msg
Repetitions)

Repetitions of messages
exchanged between remote
function including safety-
related data.

Incorrect data distribution and
execution of the Application
function(s).

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_02

The Framework shall ensure the timeliness and
sequence of data exchanged and results of
safety algorithms, e.g. by sequence number
and/or time stamps generated by unique
identifier related to the cycle (or equivalent
measures).

HA_MSG
_07

The Framework shall check the
timeliness and sequence of messages
containing safety-data, exchanged
between remote functions.

HA_MSG_
09

The Framework and Application functions
shall ignore the content and discharge a
message (containing safety-data) when
a communication error is identified
through the messages authenticity,
integrity, timeliness or sequence checks.

HA_MSG_
10

The Framework shall implement
reactions against errors in the
communication of safety-related data
that are functionally independent by any
non-trusted transmission.

HA_MS
G_11

The Framework shall guarantee the validity of safety
related data exchanged between remote functions,
through messages composing and decomposing into
variables carried out by the Message Function, with
the same SIL assigned to the Application function(s)
using messages and variables involved.

PHA_AC_
01

The remote functions exchanging safety-data with and within the Framework
shall:
_ implement safety protection in the generation of safety-data to be exchange
through the transmission system;
_ verify the incoming messages in order to detect erroneous information
(transmitter identity, type, value errors) and time errors (timing, sequencing
error);
_discharge a message when a communication error is identified;
_ react to the loss of valid communication, including tolerance of message
errors if any, as for the notification of a fatal Fault.

Message function

decomposition of
messages (to share
variables between remote
functions) in variables (to
share information between
application functions) and
composition of messages
with variables

Wrong (Msg
Resequencing)

Resequencing of messages
exchanged between remote
function including safety-
related data.

Incorrect data distribution and
execution of the Application
function(s).

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_02

The Framework shall ensure the timeliness and
sequence of data exchanged and results of
safety algorithms, e.g. by sequence number
and/or time stamps generated by unique
identifier related to the cycle (or equivalent
measures).

HA_MSG
_07

The Framework shall check the
timeliness and sequence of messages
containing safety-data, exchanged
between remote functions.

HA_MSG_
09

The Framework and Application functions
shall ignore the content and discharge a
message (containing safety-data) when
a communication error is identified
through the messages authenticity,
integrity, timeliness or sequence checks.

HA_MSG_
10

The Framework shall implement
reactions against errors in the
communication of safety-related data
that are functionally independent by any
non-trusted transmission.

HA_MS
G_11

The Framework shall guarantee the validity of safety
related data exchanged between remote functions,
through messages composing and decomposing into
variables carried out by the Message Function, with
the same SIL assigned to the Application function(s)
using messages and variables involved.

PHA_AC_
01

The remote functions exchanging safety-data with and within the Framework
shall:
_ implement safety protection in the generation of safety-data to be exchange
through the transmission system;
_ verify the incoming messages in order to detect erroneous information
(transmitter identity, type, value errors) and time errors (timing, sequencing
error);
_discharge a message when a communication error is identified;
_ react to the loss of valid communication, including tolerance of message
errors if any, as for the notification of a fatal Fault.

Message function

decomposition of
messages (to share
variables between remote
functions) in variables (to
share information between
application functions) and
composition of messages
with variables

Wrong (Msg
Corruption)

Corruption of safety-related
data within the messages
exchanged between remote
function .

Incorrect data distribution and
execution of the Application
function(s).

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_01

The Framework shall ensure the integrity of
safety-related data exchanged by
communication protocol(s) implementing a
safety layer (i.e. a safety code) with source
and/or destination identifiers, information that
the transmitter is operating properly,
redundancy field allowing error detection and
assuring data integrity.

HA_MSG
_06

 The Framework shall check the
integrity (i.e. information is complete
and not altered) of incoming messages
containing safety.

HA_MSG_
09

The Framework and Application functions
shall ignore the content and discharge a
message (containing safety-data) when
a communication error is identified
through the messages authenticity,
integrity, timeliness or sequence checks.

HA_MSG_
10

The Framework shall implement
reactions against errors in the
communication of safety-related data
that are functionally independent by any
non-trusted transmission.

HA_MS
G_11

The Framework shall guarantee the validity of safety
related data exchanged between remote functions,
through messages composing and decomposing into
variables carried out by the Message Function, with
the same SIL assigned to the Application function(s)
using messages and variables involved.

PHA_AC_
01

The remote functions exchanging safety-data with and within the Framework
shall:
_ implement safety protection in the generation of safety-data to be exchange
through the transmission system;
_ verify the incoming messages in order to detect erroneous information
(transmitter identity, type, value errors) and time errors (timing, sequencing
error);
_discharge a message when a communication error is identified;
_ react to the loss of valid communication, including tolerance of message
errors if any, as for the notification of a fatal Fault.

Message function

decomposition of
messages (to share
variables between remote
functions) in variables (to
share information between
application functions) and
composition of messages
with variables

Undue (Msg
Insertion)

Insertion within the messages
exchanged between remote
function including safety-
related data.

Incorrect data distribution and
execution of the Application
function(s).

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_01

The Framework shall ensure the integrity of
safety-related data exchanged by
communication protocol(s) implementing a
safety layer (i.e. a safety code) with source
and/or destination identifiers, information that
the transmitter is operating properly,
redundancy field allowing error detection and
assuring data integrity.

HA_MSG
_07

The Framework shall check the
timeliness and sequence of messages
containing safety-data, exchanged
between remote functions.

HA_MSG_
09

The Framework and Application functions
shall ignore the content and discharge a
message (containing safety-data) when
a communication error is identified
through the messages authenticity,
integrity, timeliness or sequence checks.

HA_MSG_
10

The Framework shall implement
reactions against errors in the
communication of safety-related data
that are functionally independent by any
non-trusted transmission.

HA_MS
G_11

The Framework shall guarantee the validity of safety
related data exchanged between remote functions,
through messages composing and decomposing into
variables carried out by the Message Function, with
the same SIL assigned to the Application function(s)
using messages and variables involved.

PHA_AC_
01

The remote functions exchanging safety-data with and within the Framework
shall:
_ implement safety protection in the generation of safety-data to be exchange
through the transmission system;
_ verify the incoming messages in order to detect erroneous information
(transmitter identity, type, value errors) and time errors (timing, sequencing
error);
_discharge a message when a communication error is identified;
_ react to the loss of valid communication, including tolerance of message
errors if any, as for the notification of a fatal Fault.

Message function

decomposition of
messages (to share
variables between remote
functions) in variables (to
share information between
application functions) and
composition of messages
with variables

Undue (Msg
Masquerade)

Masquerade messages
including safety-related data
exchanged between remote
function .

Incorrect data distribution and
execution of the Application
function(s).

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_03

The Framework shall protect the
communication of safety-related data against
cyber-attack, ensuring data authenticity and
confidentiality, e.g. by software and/or
hardware security mechanisms (e.g.
cryptographic mechanisms, control of access to
data).

HA_MSG
_08

The Framework shall check the
authenticity of incoming message
containing safety data, exchanged
between remote functions.

HA_MSG_
09

The Framework and Application functions
shall ignore the content and discharge a
message (containing safety-data) when
a communication error is identified
through the messages authenticity,
integrity, timeliness or sequence checks.

HA_MSG_
10

The Framework shall implement
reactions against errors in the
communication of safety-related data
that are functionally independent by any
non-trusted transmission.

HA_MS
G_11

The Framework shall guarantee the validity of safety
related data exchanged between remote functions,
through messages composing and decomposing into
variables carried out by the Message Function, with
the same SIL assigned to the Application function(s)
using messages and variables involved.

PHA_AC_
01

The remote functions exchanging safety-data with and within the Framework
shall:
_ implement safety protection in the generation of safety-data to be exchange
through the transmission system;
_ verify the incoming messages in order to detect erroneous information
(transmitter identity, type, value errors) and time errors (timing, sequencing
error);
_discharge a message when a communication error is identified;
_ react to the loss of valid communication, including tolerance of message
errors if any, as for the notification of a fatal Fault.

Message function

decomposition of
messages (to share
variables between remote
functions) in variables (to
share information between
application functions) and
composition of messages
with variables

Undue

Undue use of message
containing non-safety related
data, for safety-related
applications.

Incorrect data distribution and
execution of the Application
function(s).

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect exchange of data
between remote functions.

FDF_SH_05
HA_MSG
_04

The Framework shall use protocols for
diagnostic, maintenance, configuration and
communication of non-safety related data with
different structures than one(s) used for the
communication of safety-related data.

HA_MSG
_08

The Framework shall check the
authenticity of incoming message
containing safety data, exchanged
between remote functions.

HA_MSG_
09

The Framework and Application functions
shall ignore the content and discharge a
message (containing safety-data) when
a communication error is identified
through the messages authenticity,
integrity, timeliness or sequence checks.

HA_MSG_
10

The Framework shall implement
reactions against errors in the
communication of safety-related data
that are functionally independent by any
non-trusted transmission.

HA_MS
G_12

The Framework shall allow Message Function to
access to memory space(s) containing messages and
to memory space(s) containing variables with the
same SIL.

PHA_AC_
01

The remote functions exchanging safety-data with and within the Framework
shall:
_ implement safety protection in the generation of safety-data to be exchange
through the transmission system;
_ verify the incoming messages in order to detect erroneous information
(transmitter identity, type, value errors) and time errors (timing, sequencing
error);
_discharge a message when a communication error is identified;
_ react to the loss of valid communication, including tolerance of message
errors if any, as for the notification of a fatal Fault.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

Sub-function Description Guide-word
Deviation / Functional Failure

mode
Local effect Final effect Hazard ID ID Description ID Description ID Description ID Description ID Description ID Description ID Description

FUNCTIONAL FAILURE MODE FAILURE EFFECTS

COUNTERMEASURES SPECIFICATION

Correct functional operation Detection of faults Action following Detection Independence of Items Systematic & Random faults Application conditions Recommendations

Input/Output
function

reading of input and
updating of variables /
setting of outputs
according to variables

No / loss of
No reading of input and/or
updating of variables

Unavailability of the updated
control(s) from the interfaced
object(s), required for the
proper execution of the
Application functions.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to a missed or incorrect acquisition of
controls (input) from the interfaced
object(s).

FDF_SH_04
HA_IO_0
1

The Framework shall provide services that allow
the Application function to read the last valid
value stored into an exchange variable and to
update this value according to the status of the
related input (coming from the interfaced
object).

HA_IO_0
5

The Framework shall detect
inconsistency between the values
stored into the exchange variables and
the status pf the related platform's
input and output.

HA_IO_06

The Framework, in case of any
inconsistency between the values stored
into an exchange variable and the status
of the related platform's input / output,
shall inform the Application function(s)
with read and/or write privilege on this
variable.

- -
HA_IO_
08

The Framework shall guarantee the updating of each
exchange variable (according to the status of related
input) and its reading with the SIL assigned to the
Application function(s) involved and to the specific
variable.

PHA_AC_
05

The Application function shall react to the notification of a Fault condition due
to inconsistency between the values stored into an exchange variable and the
status of the related platform's input / output (fatal Fault), by the transition
into the specific safe state.

Input/Output
function

reading of input and
updating of variables /
setting of outputs
according to variables

No / loss of / partial
No setting of outputs
according to variables

Missed updating of
command(s) toward the
interfaced object(s), required
for the proper execution of the
Application functions.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to a missed or incorrect setting of
commands (output) toward the interfaced
object(s).

FDF_SH_06
HA_IO_0
2

The Framework shall provide services that allow
the Application function to write a value into an
exchange variable and to update accordingly to
the status of the related output (toward the
interfaced object).

HA_IO_0
5

The Framework shall detect
inconsistency between the values
stored into the exchange variables and
the status pf the related platform's
input and output.

HA_IO_06

The Framework, in case of any
inconsistency between the values stored
into an exchange variable and the status
of the related platform's input / output,
shall inform the Application function(s)
with read and/or write privilege on this
variable.

- -
HA_IO_
09

The Framework shall guarantee the updating the
status of each output (according to value stored into
the related exchange variable) and its writing with the
SIL assigned to the Application function(s) involved
and to the specific variable.

PHA_AC_
05

The Application function shall react to the notification of a Fault condition due
to inconsistency between the values stored into an exchange variable and the
status of the related platform's input / output (fatal Fault), by the transition
into the specific safe state.

Input/Output
function

reading of input and
updating of variables /
setting of outputs
according to variables

Wrong
Incorrect reading of input
and/or updating of variables
(wrong value)

Incorrect control(s) coming
from the interfaced object(s),
i.e. different with respect to
the current status, used for the
proper execution of the
Application functions.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to a missed or incorrect acquisition of
controls (input) from the interfaced
object(s).

FDF_SH_04
HA_IO_0
1

The Framework shall provide services that allow
the Application function to read the last valid
value stored into an exchange variable and to
update this value according to the status of the
related input (coming from the interfaced
object).

HA_IO_0
5

The Framework shall detect
inconsistency between the values
stored into the exchange variables and
the status pf the related platform's
input and output.

HA_IO_06

The Framework, in case of any
inconsistency between the values stored
into an exchange variable and the status
of the related platform's input / output,
shall inform the Application function(s)
with read and/or write privilege on this
variable.

- -
HA_IO_
08

The Framework shall guarantee the updating of each
exchange variable (according to the status of related
input) and its reading with the SIL assigned to the
Application function(s) involved and to the specific
variable.

PHA_AC_
05

The Application function shall react to the notification of a Fault condition due
to inconsistency between the values stored into an exchange variable and the
status of the related platform's input / output (fatal Fault), by the transition
into the specific safe state.

Input/Output
function

reading of input and
updating of variables /
setting of outputs
according to variables

Wrong
Incorrect setting of outputs
according to variables (wrong
value)

Incorrect command(s) toward
the interfaced object(s), i.e.
different than required for the
proper execution of the
Application functions.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to a missed or incorrect setting of
commands (output) toward the interfaced
object(s).

FDF_SH_06
HA_IO_0
2

The Framework shall provide services that allow
the Application function to write a value into an
exchange variable and to update accordingly to
the status of the related output (toward the
interfaced object).

HA_IO_0
5

The Framework shall detect
inconsistency between the values
stored into the exchange variables and
the status pf the related platform's
input and output.

HA_IO_06

The Framework, in case of any
inconsistency between the values stored
into an exchange variable and the status
of the related platform's input / output,
shall inform the Application function(s)
with read and/or write privilege on this
variable.

HA_IO_07

The Framework shall be able to provide
independence between different (set of)
input / output interfacing external
objects (that can be request by
Application function to implement
reliable-safe architecture).

HA_IO_
09

The Framework shall guarantee the updating the
status of each output (according to value stored into
the related exchange variable) and its writing with the
SIL assigned to the Application function(s) involved
and to the specific variable.

PHA_AC_
05

The Application function shall react to the notification of a Fault condition due
to inconsistency between the values stored into an exchange variable and the
status of the related platform's input / output (fatal Fault), by the transition
into the specific safe state.

Input/Output
function

reading of input and
updating of variables /
setting of outputs
according to variables

Delayed / undue
Incorrect timing in the reading
of input and/or updating of
variables (delayed or too fast)

Incorrect control(s) coming
from the interfaced object(s),
i.e. different with respect to
the current status, used for the
proper execution of the
Application functions.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to a missed or incorrect acquisition of
controls (input) from the interfaced
object(s).

FDF_SH_04
HA_IO_0
4

The Framework shall read and write all the I/O
related to the executed Application function in
one cycle only, guarantying that the current
value of every input is stored in the associated
exchange variable at the beginning of each
cycle and the current value of every output is
set according to the value stored in the
associated exchange variable at the end of each
cycle..

HA_IO_0
5

The Framework shall detect
inconsistency between the values
stored into the exchange variables and
the status pf the related platform's
input and output.

HA_IO_06

The Framework, in case of any
inconsistency between the values stored
into an exchange variable and the status
of the related platform's input / output,
shall inform the Application function(s)
with read and/or write privilege on this
variable.

HA_IO_07

The Framework shall be able to provide
independence between different (set of)
input / output interfacing external
objects (that can be request by
Application function to implement
reliable-safe architecture).

HA_IO_
08

The Framework shall guarantee the updating of each
exchange variable (according to the status of related
input) and its reading with the SIL assigned to the
Application function(s) involved and to the specific
variable.

PHA_AC_
05

The Application function shall react to the notification of a Fault condition due
to inconsistency between the values stored into an exchange variable and the
status of the related platform's input / output (fatal Fault), by the transition
into the specific safe state.

Input/Output
function

reading of input and
updating of variables /
setting of outputs
according to variables

Delayed / undue

Incorrect timing in the setting
of outputs according to
variables (delayed or too
fast)

Incorrect command(s) toward
the interfaced object(s), i.e.
different than required for the
proper execution of the
Application functions.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to a missed or incorrect setting of
commands (output) toward the interfaced
object(s).

FDF_SH_06
HA_IO_0
4

The Framework shall read and write all the I/O
related to the executed Application function in
one cycle only, guarantying that the current
value of every input is stored in the associated
exchange variable at the beginning of each
cycle and the current value of every output is
set according to the value stored in the
associated exchange variable at the end of each
cycle..

HA_IO_0
5

The Framework shall detect
inconsistency between the values
stored into the exchange variables and
the status pf the related platform's
input and output.

HA_IO_06

The Framework, in case of any
inconsistency between the values stored
into an exchange variable and the status
of the related platform's input / output,
shall inform the Application function(s)
with read and/or write privilege on this
variable.

HA_IO_07

The Framework shall be able to provide
independence between different (set of)
input / output interfacing external
objects (that can be request by
Application function to implement
reliable-safe architecture).

HA_IO_
09

The Framework shall guarantee the updating the
status of each output (according to value stored into
the related exchange variable) and its writing with the
SIL assigned to the Application function(s) involved
and to the specific variable.

PHA_AC_
05

The Application function shall react to the notification of a Fault condition due
to inconsistency between the values stored into an exchange variable and the
status of the related platform's input / output (fatal Fault), by the transition
into the specific safe state.

Input/Output
function

reading of input and
updating of variables /
setting of outputs
according to variables

Undue
Incorrect reading of input
and/or updating of variables
(exchange variable)

Incorrect control(s) coming
from the interfaced object(s),
i.e. different with respect to
the current status, used for the
proper execution of the
Application functions.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to a missed or incorrect acquisition of
controls (input) from the interfaced
object(s).

FDF_SH_04
HA_IO_0
3

The Framework shall identify univocally each
input / output interfacing external objects, each
exchange variable, and each association
between them, according to the Configuration
file(s) of the Application function(s) using them.

HA_IO_0
5

The Framework shall detect
inconsistency between the values
stored into the exchange variables and
the status pf the related platform's
input and output.

HA_IO_06

The Framework, in case of any
inconsistency between the values stored
into an exchange variable and the status
of the related platform's input / output,
shall inform the Application function(s)
with read and/or write privilege on this
variable.

HA_IO_07

The Framework shall be able to provide
independence between different (set of)
input / output interfacing external
objects (that can be request by
Application function to implement
reliable-safe architecture).

HA_IO_
10

The Framework shall allow I/O Function to access
only to memory space with the same SIL.

PHA_AC_
05

The Application function shall react to the notification of a Fault condition due
to inconsistency between the values stored into an exchange variable and the
status of the related platform's input / output (fatal Fault), by the transition
into the specific safe state.

Input/Output
function

reading of input and
updating of variables /
setting of outputs
according to variables

Undue
Incorrect setting of outputs
according to variables
(exchange variable)

Incorrect command(s) toward
the interfaced object(s), i.e.
different than required for the
proper execution of the
Application functions.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to a missed or incorrect setting of
commands (output) toward the interfaced
object(s).

FDF_SH_06
HA_IO_0
3

The Framework shall identify univocally each
input / output interfacing external objects, each
exchange variable, and each association
between them, according to the Configuration
file(s) of the Application function(s) using them.

HA_IO_0
5

The Framework shall detect
inconsistency between the values
stored into the exchange variables and
the status pf the related platform's
input and output.

HA_IO_06

The Framework, in case of any
inconsistency between the values stored
into an exchange variable and the status
of the related platform's input / output,
shall inform the Application function(s)
with read and/or write privilege on this
variable.

HA_IO_07

The Framework shall be able to provide
independence between different (set of)
input / output interfacing external
objects (that can be request by
Application function to implement
reliable-safe architecture).

HA_IO_
10

The Framework shall allow I/O Function to access
only to memory space with the same SIL.

PHA_AC_
05

The Application function shall react to the notification of a Fault condition due
to inconsistency between the values stored into an exchange variable and the
status of the related platform's input / output (fatal Fault), by the transition
into the specific safe state.

Time management
dissemination of the global
time from the external
global clock

No / missed
No dissemination of the global
time from the external global
clock

Different time references are
used by the different
Application functions, with an
ineffective scheduled execution
of applications.

Potential unsafe behaviour of the Platform
due to a wrong timing in the execution of
the safety-related Application functions

FDF_SH_03
HA_TM_
02

The Framework shall not finalize the
inauguration and allow operation without a
global time valid (i.e. aligned with the external
global clock) and taken as unique reference by
all Service and Application functions,
independently from the partitions execution.

HA_TM_
03

The Framework shall monitor the
alignment with the external global
clock, the effectiveness of the global
time dissemination and functions
synchronization.

HA_TM_0
4

The Framework shall notify a Fault
condition, in case of error in the global
time synchronization (fatal Fault), to all
the Application functions involved.

HA_TM_0
5

The Framework shall synchronize the
local computer clock with the external
global clock source and keep it
synchronized independently from the
execution of the different partitions'
processes.

HA_TM
_06

The Framework shall disseminate the global time
and/or detect any misalignment against the external
reference time, with the highest SIL assigned to the
Application functions to be executed.

PHA_AC_
03

The Application function shall react to the notification of a Fault condition due
to error in the global time dissemination or functions synchronization (fatal
Fault), implementing tolerance (e.g. errors for a limited number of cycles) if
any, by the transition into the specific safe state.

PHA_REC_
07

It is recommended to assess the
implementation of messages retry
mechanism by each Application functions,
to improve dependability (tolerance of
errors before transition into safe state)
within safety constraints.

Time management
dissemination of the global
time from the external
global clock

Wrong / Undue

Incorrect dissemination of the
global time from the external
global clock (to all nodes or to
a subset of them)

Wrong global clock
synchronization and
consequent disturb to the
scheduled execution of
applications

Potential unsafe behaviour of the Platform
due to a wrong timing in the execution of
the safety-related Application functions

FDF_SH_03
HA_TM_
02

The Framework shall not finalize the
inauguration and allow operation without a
global time valid (i.e. aligned with the external
global clock) and taken as unique reference by
all Service and Application functions,
independently from the partitions execution.

HA_TM_
03

The Framework shall monitor the
alignment with the external global
clock, the effectiveness of the global
time dissemination and functions
synchronization.

HA_TM_0
4

The Framework shall notify a Fault
condition, in case of error in the global
time synchronization (fatal Fault), to all
the Application functions involved.

HA_TM_0
5

The Framework shall synchronize the
local computer clock with the external
global clock source and keep it
synchronized independently from the
execution of the different partitions'
processes.

HA_TM
_06

The Framework shall disseminate the global time
and/or detect any misalignment against the external
reference time, with the highest SIL assigned to the
Application functions to be executed.

PHA_AC_
03

The Application function shall react to the notification of a Fault condition due
to error in the global time dissemination or functions synchronization (fatal
Fault), implementing tolerance (e.g. errors for a limited number of cycles) if
any, by the transition into the specific safe state.

Time management
dissemination of the global
time from the external
global clock

Loss of / partially /
delayed

Missed update of the global
time (i.e. according to the
external clock)

Potential drift of the global
time (with respect to the
external clock) and consequent
disturb to the scheduled
execution of applications

Potential unsafe behaviour of the Platform
due to a wrong timing in the execution of
the safety-related Application functions

FDF_SH_03
HA_TM_
01

The Framework shall synchronize the local
computer clock with the external global clock
source and keep it synchronized with a
maximum defined deviation fixed.

HA_TM_
03

The Framework shall monitor the
alignment with the external global
clock, the effectiveness of the global
time dissemination and functions
synchronization.

HA_TM_0
4

The Framework shall notify a Fault
condition, in case of error in the global
time synchronization (fatal Fault), to all
the Application functions involved.

HA_TM_0
5

The Framework shall synchronize the
local computer clock with the external
global clock source and keep it
synchronized independently from the
execution of the different partitions'
processes.

HA_TM
_06

The Framework shall disseminate the global time
and/or detect any misalignment against the external
reference time, with the highest SIL assigned to the
Application functions to be executed.

PHA_AC_
03

The Application function shall react to the notification of a Fault condition due
to error in the global time dissemination or functions synchronization (fatal
Fault), implementing tolerance (e.g. errors for a limited number of cycles) if
any, by the transition into the specific safe state.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

Sub-function Description Guide-word
Deviation / Functional Failure

mode
Local effect Final effect Hazard ID ID Description ID Description ID Description ID Description ID Description ID Description ID Description

FUNCTIONAL FAILURE MODE FAILURE EFFECTS

COUNTERMEASURES SPECIFICATION

Correct functional operation Detection of faults Action following Detection Independence of Items Systematic & Random faults Application conditions Recommendations

Framework
management

generation of variable
stores, message stores and
register functions as
specified by the
Configuration file. Offer
API.

No / partial /
Delayed

No, partial or delayed
generation of partition(s)
(definition of memory space,
variable stored, messages'
structure, register functions)
specified in the Configuration
file.

Impossible or incorrect
scheduled execution of
Application function(s), access
to variables (for reading and/or
writing), and/or management
of messages (decomposing into
variables and composing from
variables).

Potential unsafe behaviour of the Platform
in the execution of the safety-related
processes due to an incorrect generation or
allocation of resources or management of
partitions.

FDF_SH_07
HA_FRM
_01

The Framework shall generate Partitions
according to the Configuration file of the
Application functions to be executed (which
specify the SIL, address and size of the memory
space, and time window inside the global
scheduling plan) and protect each partition’s
addressing space through specific memory
protection mechanisms, e.g. by a hardware
memory management unit, and management
of access privilege and restrictions.

HA_FRM
_07

The Framework shall detect an invalid
operation in the partition attempts by
the Application function(s), e.g. access
to a Memory space without the
required reading or writing privilege.

HA_FRM_
08

The Framework shall notify a Fault
condition, in case of invalid operation in
the partition attempt (fatal Fault), to all
the Application functions involved.

HA_FRM_
11

The Framework shall guarantee the
spatial separation among Partition, in
order to ensure that no process in one
partition can modify (without
authorization) software code or
application data (i.e.. write to memory
data sections, stacks and code) or
manage the I/O assigned to another
partition, e.g. through the protection of
their memory addressing space and the
management of privilege and restrictions
for variables read / write and for access
to I/O.

HA_FR
M_14

The Framework shall generate partitions and allocate
resources with the same SIL assigned to the
Application functions to be executed, including
memories spaces storing data with the same (unique)
SIL.

PHA_AC_
04

The Application function shall react to the notification of a Fault condition due
to invalid operation in the partition attempts (fatal Fault), by the transition
into the specific safe state.

PHA_REC_
02

It is recommended to implement safety-
related application functions in compliance
with the EN 50129 technical standard on
Safety related electronic systems for
communication, signalling and processing
systems. Specifically about the admitted
architecture, according to the SIL assigned
to the application, it is recommended:
_a dual electronic structure based on
composite fail-safety with fail-safe
comparison or inherent fail-safe (highly
recommended for >SIL2 applications);
_a single electronic structure with self-
tests and supervision (recommended for

Framework
management

generation of variable
stores, message stores and
register functions as
specified by the
Configuration file. Offer
API.

No / partial

No or partial allocation of
resources to partition, for the
execution of the Application
function(s) / process(es)

Impossible or incorrect
scheduled execution of
Application function(s), access
to variables (for reading and/or
writing), and/or management
of messages (decomposing into
variables and composing from
variables).

Potential unsafe behaviour of the Platform
in the execution of the safety-related
processes due to an incorrect generation or
allocation of resources or management of
partitions.

FDF_SH_07
HA_FRM
_02

The Framework shall provide to the partition
assigned to an Application functions the
computational resources (e.g. CPU time,
memory) required into the Configuration file in
order to meet the (worst-case) timing
requirements.

HA_FRM
_07

The Framework shall detect an invalid
operation in the partition attempts by
the Application function(s), e.g. access
to a Memory space without the
required reading or writing privilege.

HA_FRM_
08

The Framework shall notify a Fault
condition, in case of invalid operation in
the partition attempt (fatal Fault), to all
the Application functions involved.

HA_FR
M_14

The Framework shall generate partitions and allocate
resources with the same SIL assigned to the
Application functions to be executed, including
memories spaces storing data with the same (unique)
SIL.

Framework
management

generation of variable
stores, message stores and
register functions as
specified by the
Configuration file. Offer
API.

Wrong

Wrong generation of
partition(s) (e.g. wrong
address or size of memory,
structure of message, stores
and register functions) with
respect to the Configuration
file.

Incorrect scheduled execution
of Application function(s),
access to variables (for reading
and/or writing), and/or
management of messages
(decomposing into variables
and composing from variables).

Potential unsafe behaviour of the Platform
in the execution of the safety-related
processes due to an incorrect generation or
allocation of resources or management of
partitions.

FDF_SH_07
HA_FRM
_01

The Framework shall generate Partitions
according to the Configuration file of the
Application functions to be executed (which
specify the SIL, address and size of the memory
space, and time window inside the global
scheduling plan) and protect each partition’s
addressing space through specific memory
protection mechanisms, e.g. by a hardware
memory management unit, and management
of access privilege and restrictions.

HA_FRM
_07

The Framework shall detect an invalid
operation in the partition attempts by
the Application function(s), e.g. access
to a Memory space without the
required reading or writing privilege.

HA_FRM_
08

The Framework shall notify a Fault
condition, in case of invalid operation in
the partition attempt (fatal Fault), to all
the Application functions involved.

HA_FRM_
11

The Framework shall guarantee the
spatial separation among Partition, in
order to ensure that no process in one
partition can modify (without
authorization) software code or
application data (i.e.. write to memory
data sections, stacks and code) or
manage the I/O assigned to another
partition, e.g. through the protection of
their memory addressing space and the
management of privilege and restrictions
for variables read / write and for access
to I/O.

HA_FR
M_14

The Framework shall generate partitions and allocate
resources with the same SIL assigned to the
Application functions to be executed, including
memories spaces storing data with the same (unique)
SIL.

PHA_AC_
04

The Application function shall react to the notification of a Fault condition due
to invalid operation in the partition attempts (fatal Fault), by the transition
into the specific safe state.

Framework
management

generation of variable
stores, message stores and
register functions as
specified by the
Configuration file. Offer
API.

Wrong

Wrong assignment of read-
write privileges and
constraints to Application
functions.

Application function(s) can
access to variables (for reading
and/or writing) unduly (i.e.
when it should be not possible
or it is not scheduled).
Application functions can
interfere in the management of
variables and related I/O.

Potential unsafe behaviour of the Platform
in the execution of the safety-related
processes due to an incorrect generation or
allocation of resources or management of
partitions.

FDF_SH_07
HA_FRM
_03

The Framework shall provide to the Application
functions the read-write privilege only to
variables (and related input/output, if any) they
are allowed to publish and the read-only
privilege to software code, parameters and
variables (and related input, if any) they are
subscribed to.

HA_FRM
_07

The Framework shall detect an invalid
operation in the partition attempts by
the Application function(s), e.g. access
to a Memory space without the
required reading or writing privilege.

HA_FRM_
08

The Framework shall notify a Fault
condition, in case of invalid operation in
the partition attempt (fatal Fault), to all
the Application functions involved.

- -
HA_FR
M_15

The Framework shall assign privileges for read-write
access to a Memory space only to independent
Application functions with the same SIL. Read-only
access could be assigned to remaining Application
functions, if data alteration during reading can be
excluded.

PHA_AC_
04

The Application function shall react to the notification of a Fault condition due
to invalid operation in the partition attempts (fatal Fault), by the transition
into the specific safe state.

Framework
management

generation of variable
stores, message stores and
register functions as
specified by the
Configuration file. Offer
API.

Wrong

Inadequate allocation of
resources to partition, for the
execution of the Application
function(s) / process(es)

Incorrect execution of the
scheduled Application
function(s) due to limitation of
resources used.

Potential unsafe behaviour of the Platform
in the execution of the safety-related
processes due to an incorrect generation or
allocation of resources or management of
partitions.

FDF_SH_07
HA_FRM
_02

The Framework shall provide to the partition
assigned to an Application functions the
computational resources (e.g. CPU time,
memory) required into the Configuration file in
order to meet the (worst-case) timing
requirements.

HA_FRM
_07

The Framework shall detect an invalid
operation in the partition attempts by
the Application function(s), e.g. access
to a Memory space without the
required reading or writing privilege.

HA_FRM_
08

The Framework shall notify a Fault
condition, in case of invalid operation in
the partition attempt (fatal Fault), to all
the Application functions involved.

- -
HA_FR
M_14

The Framework shall generate partitions and allocate
resources with the same SIL assigned to the
Application functions to be executed, including
memories spaces storing data with the same (unique)
SIL.

PHA_AC_
04

The Application function shall react to the notification of a Fault condition due
to invalid operation in the partition attempts (fatal Fault), by the transition
into the specific safe state.

Framework
management

generation of variable
stores, message stores and
register functions as
specified by the
Configuration file. Offer
API.

Wrong

Inadequate generation of
partition and/or allocation of
resources, for the execution of
multiple instances of the
Application function(s) /
process(es)

Incorrect execution of multiple
instances of the scheduled
Application function(s).

Potential unsafe behaviour of the Platform
in the execution of the safety-related
processes due to an incorrect generation or
allocation of resources or management of
partitions.

FDF_SH_07
HA_FRM
_06

The Framework shall be able to generate
partitions and allocate resources for Application
function(s) requiring multiple instances (for the
implementation of a reliable-safe architecture).

HA_FRM
_07

The Framework shall detect an invalid
operation in the partition attempts by
the Application function(s), e.g. access
to a Memory space without the
required reading or writing privilege.

HA_FRM_
08

The Framework shall notify a Fault
condition, in case of invalid operation in
the partition attempt (fatal Fault), to all
the Application functions involved.

HA_FRM_
10

The Framework shall protect and
guarantee the independence of multiple
instances of an Application function (e.g.
implementing reliable-safe architecture),
e.g. by data diversity (e.g. different time-
stamp guarantying data freshness),
timing diversity (instances do not
execute simultaneously the same safety-
related software modules), independent
(hardware) resources.

HA_FR
M_14

The Framework shall generate partitions and allocate
resources with the same SIL assigned to the
Application functions to be executed, including
memories spaces storing data with the same (unique)
SIL.

PHA_AC_
04

The Application function shall react to the notification of a Fault condition due
to invalid operation in the partition attempts (fatal Fault), by the transition
into the specific safe state.

Framework
management

generation of variable
stores, message stores and
register functions as
specified by the
Configuration file. Offer
API.

Undue

Unintended interactions
between the Operating
system and the Application
functions.

Impossible or incorrect
scheduled execution of
Application function(s).

Potential unsafe behaviour during the
execution of safety-related processes due to
unintended interactions between the
Operating system and the Application
functions.

FDF_SH_09
HA_FRM
_05

The Framework shall call Services required for
the scheduled execution of the Application
functions.

HA_FRM
_18

The Framework shall detect the
unavailability of Services required for
the scheduled executions of the
Application functions and their
incorrect call (different than scheduled)

HA_FRM_
09

The Framework shall inform the
Application functions in case of
unavailability of services required for
their scheduled execution, or in case of
incorrect call (different than scheduled).

HA_FRM_
13

The Framework shall prevent any
unintended interactions between the
Operating system activities and the
Application functions, through the
definition of formal boundaries and
interaction modalities and protecting the
Operating System (data sections, stacks,
and code) against undue calls from the
Application and Services functions (e.g.
with an invalid handle, object, address or
out of range value; in the wrong context;
without the necessary permissions).

HA_FR
M_17

The Framework shall guarantee the effectiveness of
call(s) to Service function(s) with the same SIL
assigned to the Application functions using Service(s).

PHA_AC_
04

The Application function shall react to the notification of a Fault condition due
to invalid operation in the partition attempts (fatal Fault), by the transition
into the specific safe state.

Framework
management

generation of variable
stores, message stores and
register functions as
specified by the
Configuration file. Offer
API.

Undue

Undue access to variables,
and related I/O, by Application
function(s) without the
required read/write privilege.

Application functions can
interfere in the management of
variables and related I/O.

Potential unsafe behaviour of the Platform
in the execution of the safety-related
processes due to an incorrect generation or
allocation of resources or management of
partitions.

FDF_SH_07
HA_FRM
_04

The Framework shall guarantee that Application
functions read / write variables, managing
consequently the related platform's I/O, only if
the required privilege is provided.

HA_FRM
_07

The Framework shall detect an invalid
operation in the partition attempts by
the Application function(s), e.g. access
to a Memory space without the
required reading or writing privilege.

HA_FRM_
08

The Framework shall notify a Fault
condition, in case of invalid operation in
the partition attempt (fatal Fault), to all
the Application functions involved.

HA_FRM_
12

The Framework shall guarantee spatial
separation between memory spaces
containing read-only (including software
code and parameters) and read-write
variables, variables with different SIL,
variables used by multiple independent
instances of the Application function.

HA_FR
M_16

The Framework shall guarantee the read-write access
to memory spaces (according to the assigned
privileges) with the same SIL assigned to the
Application function(s) and variables stored.

PHA_AC_
04

The Application function shall react to the notification of a Fault condition due
to invalid operation in the partition attempts (fatal Fault), by the transition
into the specific safe state.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

Sub-function Description Guide-word
Deviation / Functional Failure

mode
Local effect Final effect Hazard ID ID Description ID Description ID Description ID Description ID Description ID Description ID Description

FUNCTIONAL FAILURE MODE FAILURE EFFECTS

COUNTERMEASURES SPECIFICATION

Correct functional operation Detection of faults Action following Detection Independence of Items Systematic & Random faults Application conditions Recommendations

Configuration
management

reading, parsing, and
loading of data in the
configuration file

No / missed / partial
/ delayed

No / missed / partial reading,
parsing, or loading of data in
the configuration file

Incomplete Platform
initialization.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect configuration.

FDF_SH_08
HA_CON
F_01

The Framework shall instantiate messages and
variable according to the Configuration file,
which specifies at least: messages' identifier,
variables, to receive or to send, schedule,
deadline; variables' identifier, type, range,
default value, deadline.

HA_CON
F_04

The Framework shall verify the validity
of results coming from the inauguration
(Train Topology Database or equivalent
data structure) and their coherence
with the Configuration file.

HA_CONF
_05

The Framework shall not execute the
Application functions in case of any error
detected in the Configuration file or non-
valid results coming from the
inauguration or undue operation on the
Configuration data, and notify a (fatal)
Fault condition to all the Application
function(s) involved.

- -
HA_CO
NF_07

The Framework shall read, parse, load and check data
in the Configuration file and configure the platform
accordingly, with the same SIL assigned to the related
Application function.

PHA_AC_
08

The Application function shall react to the notification of a Fault condition due
to error detected in the Configuration file or non-valid results coming from the
inauguration (fatal Fault), by the transition into the specific safe state.

Configuration
management

reading, parsing, and
loading of data in the
configuration file

Wrong
Error during reading, parsing,
or loading of data in the
configuration file

Incorrect Platform
initialization.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect configuration.

FDF_SH_08
HA_CON
F_01

The Framework shall instantiate messages and
variable according to the Configuration file,
which specifies at least: messages' identifier,
variables, to receive or to send, schedule,
deadline; variables' identifier, type, range,
default value, deadline.

HA_CON
F_04

The Framework shall verify the validity
of results coming from the inauguration
(Train Topology Database or equivalent
data structure) and their coherence
with the Configuration file.

HA_CONF
_05

The Framework shall not execute the
Application functions in case of any error
detected in the Configuration file or non-
valid results coming from the
inauguration or undue operation on the
Configuration data, and notify a (fatal)
Fault condition to all the Application
function(s) involved.

- -
HA_CO
NF_07

The Framework shall read, parse, load and check data
in the Configuration file and configure the platform
accordingly, with the same SIL assigned to the related
Application function.

PHA_AC_
08

The Application function shall react to the notification of a Fault condition due
to error detected in the Configuration file or non-valid results coming from the
inauguration (fatal Fault), by the transition into the specific safe state.

Configuration
management

reading, parsing, and
loading of data in the
configuration file

Wrong
Data corruption during
reading, parsing, or loading of
data in the configuration file

Incorrect Platform
initialization.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect configuration.

FDF_SH_08
HA_CON
F_01

The Framework shall instantiate messages and
variable according to the Configuration file,
which specifies at least: messages' identifier,
variables, to receive or to send, schedule,
deadline; variables' identifier, type, range,
default value, deadline.

HA_CON
F_03

The Framework shall verify the validity
and integrity of the Configuration file,
before and after the end of the
inauguration services, e.g. by CRC, MD
or signature created by tooling.

HA_CONF
_05

The Framework shall not execute the
Application functions in case of any error
detected in the Configuration file or non-
valid results coming from the
inauguration or undue operation on the
Configuration data, and notify a (fatal)
Fault condition to all the Application
function(s) involved.

HA_CONF_
06

The Framework shall assure that re-
configuration required for new or
modified Application functions is
performed involving all the Application
functions to be executed, or anyway the
existing configuration for the remaining
Application functions is not altered.

HA_CO
NF_07

The Framework shall read, parse, load and check data
in the Configuration file and configure the platform
accordingly, with the same SIL assigned to the related
Application function.

PHA_AC_
08

The Application function shall react to the notification of a Fault condition due
to error detected in the Configuration file or non-valid results coming from the
inauguration (fatal Fault), by the transition into the specific safe state.

Configuration
management

reading, parsing, and
loading of data in the
configuration file

Wrong/undue

Loading of data in the
configuration file at a wrong
time (e.g. while the FDF has
already been configured).

Use of incorrect data after the
Platform initialization.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect configuration.

FDF_SH_08
HA_CON
F_08

The Framework shall load the Configuration file
during the execution of the inauguration
services and assure that any re-configuration
(re-loading of the Configuration file or loading
of a new Configuration file) is performed
involving all the Application functions to be
executed.

HA_CON
F_03

The Framework shall verify the validity
and integrity of the Configuration file,
before and after the end of the
inauguration services, e.g. by CRC, MD
or signature created by tooling.

HA_CONF
_05

The Framework shall not execute the
Application functions in case of any error
detected in the Configuration file or non-
valid results coming from the
inauguration or undue operation on the
Configuration data, and notify a (fatal)
Fault condition to all the Application
function(s) involved.

HA_CONF_
06

The Framework shall assure that re-
configuration required for new or
modified Application functions is
performed involving all the Application
functions to be executed, or anyway the
existing configuration for the remaining
Application functions is not altered.

HA_CO
NF_07

The Framework shall read, parse, load and check data
in the Configuration file and configure the platform
accordingly, with the same SIL assigned to the related
Application function.

PHA_AC_
08

The Application function shall react to the notification of a Fault condition due
to error detected in the Configuration file or non-valid results coming from the
inauguration (fatal Fault), by the transition into the specific safe state.

Configuration
management

reading, parsing, and
loading of data in the
configuration file

Undue
Reading, parsing, and loading
of data from a false or
corrupted configuration file

Incorrect Platform
initialization.

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to an incorrect configuration.

FDF_SH_08
HA_CON
F_02

The Framework shall accept only certified
remote Configuration file (coming from a
verified source), protected against data
corruption, e.g. by CRC.

HA_CON
F_03

The Framework shall verify the validity
and integrity of the Configuration file,
before and after the end of the
inauguration services, e.g. by CRC, MD
or signature created by tooling.

HA_CONF
_05

The Framework shall not execute the
Application functions in case of any error
detected in the Configuration file or non-
valid results coming from the
inauguration or undue operation on the
Configuration data, and notify a (fatal)
Fault condition to all the Application
function(s) involved.

- -
HA_CO
NF_07

The Framework shall read, parse, load and check data
in the Configuration file and configure the platform
accordingly, with the same SIL assigned to the related
Application function.

PHA_AC_
08

The Application function shall react to the notification of a Fault condition due
to error detected in the Configuration file or non-valid results coming from the
inauguration (fatal Fault), by the transition into the specific safe state.

Functions
management

execution of registered
Functions according to
their scheduling plans

No / missed

No execution of registered
function(s) required by the
scheduling plan(s) and process
priority

Missed or partial execution of
Application function(s).

Potential unsafe behaviour of the Platform
in the execution of safety-related processes
due to a missed or incorrect setting of
commands (output) toward the interfaced
object(s).

FDF_SH_06
HA_FNM
_01

The Framework shall control the execution
(start, stop, synchronizing to external trigger,
…) of Application functions assigned to each
individual partition, through the deterministic
management of timers (for sequential
execution) and semaphores (for sequential and
concurrent execution), according to their
scheduling plans and to processes priority.

HA_FNM
_06

The Framework shall monitor the
execution (start, stop, synchronizing to
external trigger, …) of processes with
respect to defined timing bounds for
(intra-partition and inter-partition)
communication and processing.

HA_FNM_
07

The Framework shall notify a Fault
condition, in case of error in the
execution of processes according to the
scheduling plans, including the violation
of timing bounds (fatal Fault), to all the
Application functions involved.

HA_FNM_
08

The Framework shall implement
temporal partitioning, by ensuring that a
process within a given time budget
cannot be affected by the actions of any
other task from other partitions, in terms
of rate, latency, jitter and duration of the
scheduled access.

HA_FN
M_09

The Framework shall control the execution of
processes and the transmission of messages
(according to their scheduling plans) with the same
SIL assigned to the involved Application functions.

PHA_AC_
02

The Application function shall react to the notification of a Fault condition due
to error in the execution of processes according to the scheduling plans (fatal
Fault), implementing tolerance (e.g. timing bounds violated for a limited
number of times) if any, by the transition into the specific safe state.

Functions
management

execution of registered
Functions according to
their scheduling plans

Wrong

Error in the execution of
function(s) with respect to the
scheduling plan(s) and
processes priority.

Missed execution of
Application function(s).
Undue execution of Application
function(s) when not required,
with potential disturb to the
time partitioning.

Potential unsafe behaviour of the Platform
due to a wrong timing in the execution of
the safety-related Application functions

FDF_SH_03
HA_FNM
_05

The Framework shall avoid interrupts or
manage them through the Operating system
only (even if triggered by the Application
functions or by hardware), avoiding any disturb
to the time partitioning, i.e. without any change
of the time budget allocation.

HA_FNM
_06

The Framework shall monitor the
execution (start, stop, synchronizing to
external trigger, …) of processes with
respect to defined timing bounds for
(intra-partition and inter-partition)
communication and processing.

HA_FNM_
07

The Framework shall notify a Fault
condition, in case of error in the
execution of processes according to the
scheduling plans, including the violation
of timing bounds (fatal Fault), to all the
Application functions involved.

HA_FNM_
08

The Framework shall implement
temporal partitioning, by ensuring that a
process within a given time budget
cannot be affected by the actions of any
other task from other partitions, in terms
of rate, latency, jitter and duration of the
scheduled access.

HA_FN
M_09

The Framework shall control the execution of
processes and the transmission of messages
(according to their scheduling plans) with the same
SIL assigned to the involved Application functions.

PHA_AC_
02

The Application function shall react to the notification of a Fault condition due
to error in the execution of processes according to the scheduling plans (fatal
Fault), implementing tolerance (e.g. timing bounds violated for a limited
number of times) if any, by the transition into the specific safe state.

Functions
management

execution of registered
Functions according to
their scheduling plans

Loss of / partially

Incomplete execution of
registered Function(s) with
respect to the scheduling
plan(s)

Missed or partial execution of
Application function(s).

Potential unsafe behaviour of the Platform
due to a wrong timing in the execution of
the safety-related Application functions

FDF_SH_03
HA_FNM
_01

The Framework shall control the execution
(start, stop, synchronizing to external trigger,
…) of Application functions assigned to each
individual partition, through the deterministic
management of timers (for sequential
execution) and semaphores (for sequential and
concurrent execution), according to their
scheduling plans and to processes priority.

HA_FNM
_06

The Framework shall monitor the
execution (start, stop, synchronizing to
external trigger, …) of processes with
respect to defined timing bounds for
(intra-partition and inter-partition)
communication and processing.

HA_FNM_
07

The Framework shall notify a Fault
condition, in case of error in the
execution of processes according to the
scheduling plans, including the violation
of timing bounds (fatal Fault), to all the
Application functions involved.

HA_FNM_
08

The Framework shall implement
temporal partitioning, by ensuring that a
process within a given time budget
cannot be affected by the actions of any
other task from other partitions, in terms
of rate, latency, jitter and duration of the
scheduled access.

HA_FN
M_09

The Framework shall control the execution of
processes and the transmission of messages
(according to their scheduling plans) with the same
SIL assigned to the involved Application functions.

PHA_AC_
02

The Application function shall react to the notification of a Fault condition due
to error in the execution of processes according to the scheduling plans (fatal
Fault), implementing tolerance (e.g. timing bounds violated for a limited
number of times) if any, by the transition into the specific safe state.

Functions
management

execution of registered
Functions according to
their scheduling plans

Delayed

Delayed execution of
registered Function(s) with
respect to the scheduling
plan(s)

Execution of Application
function(s) with an excessive
response time (i.e. not
compatible with specific
constraints).

Potential unsafe behaviour of the Platform
due to a wrong timing in the execution of
the safety-related Application functions

FDF_SH_03
HA_FNM
_03

The Framework shall implement Service
functions whose response times allow the real-
time execution of processes and the fulfilment
of the most restrictive response time required
by the Application functions to be executed.

HA_FNM
_06

The Framework shall monitor the
execution (start, stop, synchronizing to
external trigger, …) of processes with
respect to defined timing bounds for
(intra-partition and inter-partition)
communication and processing.

HA_FNM_
07

The Framework shall notify a Fault
condition, in case of error in the
execution of processes according to the
scheduling plans, including the violation
of timing bounds (fatal Fault), to all the
Application functions involved.

HA_FNM_
08

The Framework shall implement
temporal partitioning, by ensuring that a
process within a given time budget
cannot be affected by the actions of any
other task from other partitions, in terms
of rate, latency, jitter and duration of the
scheduled access.

HA_FN
M_09

The Framework shall control the execution of
processes and the transmission of messages
(according to their scheduling plans) with the same
SIL assigned to the involved Application functions.

PHA_AC_
02

The Application function shall react to the notification of a Fault condition due
to error in the execution of processes according to the scheduling plans (fatal
Fault), implementing tolerance (e.g. timing bounds violated for a limited
number of times) if any, by the transition into the specific safe state.

Functions
management

execution of registered
Functions according to
their scheduling plans

Wrong

Error in the execution of
function(s) with respect to the
scheduling plan(s) and
processes priority.

Missed execution of
Application function(s) because
of reduced time budget than
initially allocated.

Potential unsafe behaviour of the Platform
due to a wrong timing in the execution of
the safety-related Application functions

FDF_SH_03
HA_FNM
_04

The Framework shall implement mechanisms to
ensure the execution of real-time processes in
spite of transient temporal violations, e.g. due
to inter-module communications
acknowledgements, time-outs, access to
memory, interrupts.

HA_FNM
_06

The Framework shall monitor the
execution (start, stop, synchronizing to
external trigger, …) of processes with
respect to defined timing bounds for
(intra-partition and inter-partition)
communication and processing.

HA_FNM_
07

The Framework shall notify a Fault
condition, in case of error in the
execution of processes according to the
scheduling plans, including the violation
of timing bounds (fatal Fault), to all the
Application functions involved.

HA_FNM_
08

The Framework shall implement
temporal partitioning, by ensuring that a
process within a given time budget
cannot be affected by the actions of any
other task from other partitions, in terms
of rate, latency, jitter and duration of the
scheduled access.

HA_FN
M_09

The Framework shall control the execution of
processes and the transmission of messages
(according to their scheduling plans) with the same
SIL assigned to the involved Application functions.

PHA_AC_
02

The Application function shall react to the notification of a Fault condition due
to error in the execution of processes according to the scheduling plans (fatal
Fault), implementing tolerance (e.g. timing bounds violated for a limited
number of times) if any, by the transition into the specific safe state.

Functions
management

execution of registered
Functions according to
their scheduling plans

Undue
Undue execution of registered
Functions, when not required
by the scheduling plan(s)

Undue execution of Application
function(s) and access to
memory when not required,
with potential disturb to the
time partitioning.

Potential unsafe behaviour of the Platform
due to a wrong timing in the execution of
the safety-related Application functions

FDF_SH_03
HA_FNM
_02

The Framework shall execute an Application
function, giving access to memory resources,
only when required by its scheduling plan (and
take away access otherwise).

HA_FNM
_06

The Framework shall monitor the
execution (start, stop, synchronizing to
external trigger, …) of processes with
respect to defined timing bounds for
(intra-partition and inter-partition)
communication and processing.

HA_FNM_
07

The Framework shall notify a Fault
condition, in case of error in the
execution of processes according to the
scheduling plans, including the violation
of timing bounds (fatal Fault), to all the
Application functions involved.

HA_FNM_
08

The Framework shall implement
temporal partitioning, by ensuring that a
process within a given time budget
cannot be affected by the actions of any
other task from other partitions, in terms
of rate, latency, jitter and duration of the
scheduled access.

HA_FN
M_09

The Framework shall control the execution of
processes and the transmission of messages
(according to their scheduling plans) with the same
SIL assigned to the involved Application functions.

PHA_AC_
02

The Application function shall react to the notification of a Fault condition due
to error in the execution of processes according to the scheduling plans (fatal
Fault), implementing tolerance (e.g. timing bounds violated for a limited
number of times) if any, by the transition into the specific safe state.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

Sub-function Description Guide-word
Deviation / Functional Failure

mode
Local effect Final effect Hazard ID ID Description ID Description ID Description ID Description ID Description ID Description ID Description

FUNCTIONAL FAILURE MODE FAILURE EFFECTS

COUNTERMEASURES SPECIFICATION

Correct functional operation Detection of faults Action following Detection Independence of Items Systematic & Random faults Application conditions Recommendations

Fault management

detection, isolation,
notification and reaction to
faults, and the recognition
of system status with
respect to errors and
failures

No / missed

Missed detection of faults of
(hardware) resources used by
Service and Application
functions.

Faults of (hardware) resources
used by Service and Application
functions can be latent (i.e. not
detected) and lead (alone or
with further concurrent faults)
to an incorrect execution of
Service and Application
functions.

Potential unsafe behaviour of the Platform
in the execution of the safety-related
Application functions due to an incorrect
management of fault condition(s).

FDF_SH_02
HA_FLT_
01

The Framework shall provide services for the
detection of faults of (hardware) resources
used by Service and Application functions, at
the power up (i.e. during the initialization) and
periodically during the operation (nominal and
degraded phases), e.g. test memories
containing safety related data are totally tested
at the initialization phase and at any new
allocation and cyclically at run-time.

HA_FLT_
06

The Framework shall verify the
capability to notify a Fault condition
under a representative set of failure
scenarios.

HA_FLT_0
8

The Framework, after the detection of a
condition that blocks or threats the
proper execution of Service or Application
functions (fatal Fault), shall notify a Fault
condition to all the Application functions
involved, in a time that is compatible with
their timely transition into safe state (i.e.
not later than the maximum time for
failure detection and negation specified
by the Applications).

- -
HA_FLT
_10

The Framework shall detect, isolate, notify and react
to fault with the highest SIL assigned to the safety-
related Application functions to be executed.

PHA_AC_
07

The Application function shall react to any fatal Fault notified by the
Framework (i.e. condition that blocks or threat its proper execution) through
the transition and retention into its safe state, by blocking its safety-related
functions and maintaining all outputs to their restrictive state (typically de-
energized), till the execution of a defined maintenance procedure.

PHA_REC_
03

It is recommended to execute services for
faults detection at physical (e.g.
temperature, voltage, memories failures),
temporal and logical (e.g. error detecting
codes, program sequence monitoring), and
functional (e.g. configuration data
integrity, spatial separation between
resources) levels, at the power up (i.e.
during the initialization) and periodically
during the operation (nominal and
degraded phases).

Fault management

detection, isolation,
notification and reaction to
faults, and the recognition
of system status with
respect to errors and
failures

No / missed
Missed detection of faults
during the generation of the
application software code

Faults during the generation of
the software code can be
latent (i.e. not detected) and
lead to an incorrect execution
of the Application function.

Potential unsafe behaviour of the Platform
in the execution of the safety-related
Application functions due to an incorrect
management of fault condition(s).

FDF_SH_02
HA_FLT_
02

The Framework shall provide services for the
detection of faults during the installation of the
Applications software (otherwise, to be
required to the Applications).

HA_FLT_
06

The Framework shall verify the
capability to notify a Fault condition
under a representative set of failure
scenarios.

HA_FLT_0
7

The Framework shall inhibit the execution
of the Application function in case of
negative results of the initial code
integrity check.

HA_FLT
_10

The Framework shall detect, isolate, notify and react
to fault with the highest SIL assigned to the safety-
related Application functions to be executed.

PHA_AC_
07

The Application function shall react to any fatal Fault notified by the
Framework (i.e. condition that blocks or threat its proper execution) through
the transition and retention into its safe state, by blocking its safety-related
functions and maintaining all outputs to their restrictive state (typically de-
energized), till the execution of a defined maintenance procedure.

PHA_REC_
04

It is recommended to implement means
for the recognition of system status with
respect to errors and failures that might
occur or have occurred, supporting faults
isolation and graceful degradation, in order
to maintain the more critical Application
functions available despite failures by
dropping the less critical functions.

Fault management

detection, isolation,
notification and reaction to
faults, and the recognition
of system status with
respect to errors and
failures

No / missed

Missed detection of faults
during the run-time execution
of the application software
code

Faults during the execution of
the software code can lead to
an incorrect execution of the
Application function.

Potential unsafe behaviour of the Platform
in the execution of the safety-related
Application functions due to an incorrect
management of fault condition(s).

FDF_SH_02
HA_FLT_
03

The Framework shall provide services for the
detection of faults during the run-time
execution of the Application function code
(otherwise, to be required to the Application
function), e.g. by monitoring the process and
data flow and comparing their state to
configured constraints (Program Flow
Monitoring), by checking variables values
against predefined range and for plausibility, by
detecting and correcting errors in sensitive
information (Error Detecting and Correcting
Codes).

HA_FLT_
06

The Framework shall verify the
capability to notify a Fault condition
under a representative set of failure
scenarios.

HA_FLT_0
8

The Framework, after the detection of a
condition that blocks or threats the
proper execution of Service or Application
functions (fatal Fault), shall notify a Fault
condition to all the Application functions
involved, in a time that is compatible with
their timely transition into safe state (i.e.
not later than the maximum time for
failure detection and negation specified
by the Applications).

HA_FLT
_10

The Framework shall detect, isolate, notify and react
to fault with the highest SIL assigned to the safety-
related Application functions to be executed.

PHA_AC_
07

The Application function shall react to any fatal Fault notified by the
Framework (i.e. condition that blocks or threat its proper execution) through
the transition and retention into its safe state, by blocking its safety-related
functions and maintaining all outputs to their restrictive state (typically de-
energized), till the execution of a defined maintenance procedure.

PHA_REC_
05

It is recommended to implement
Validation and verification support service
that allows fault injection and reaction
monitoring, including faults of non-safety
related Service and Application functions,
partitioning and isolation mechanism,
communication (transmission, reception)
and sharing of network and memory
resources, output control, input
monitoring, application execution (timing,
memory access, start, stop, throttling).

Fault management

detection, isolation,
notification and reaction to
faults, and the recognition
of system status with
respect to errors and
failures

Wrong / Delay
Ineffective reaction to a
detected fault

Missed or delayed transition
into a safe state (in case of
fault impacting safety-related
Application function(s)).

Potential unsafe behaviour of the Platform
in the execution of the safety-related
Application functions due to an incorrect
management of fault condition(s).

FDF_SH_02
HA_FLT_
04

The Framework shall execute services for Fault
detection, isolation, notification and reaction
processes with the highest priority, without any
disturb or unintended effects due to other
Service and Application functions.

HA_FLT_
06

The Framework shall verify the
capability to notify a Fault condition
under a representative set of failure
scenarios.

HA_FLT_0
8

The Framework, after the detection of a
condition that blocks or threats the
proper execution of Service or Application
functions (fatal Fault), shall notify a Fault
condition to all the Application functions
involved, in a time that is compatible with
their timely transition into safe state (i.e.
not later than the maximum time for
failure detection and negation specified
by the Applications).

HA_FLT_0
9

The framework shall manage the
interaction between Service and
Application functions:
_avoiding that Service functions can
force the outputs independently from
the Application function when active,
during operation (normal and degraded
phases);
_preventing the access to any off-line
service (e.g. validation and verification
support) at the power up, and during the
initialization and the operating (nominal
and degraded) phases;
_guarantying the retention of a safe
state after a fatal Fault (i.e. condition
that blocks or threats the proper
execution of Service or Application
functions).

HA_FLT
_10

The Framework shall detect, isolate, notify and react
to fault with the highest SIL assigned to the safety-
related Application functions to be executed.

PHA_AC_
07

The Application function shall react to any fatal Fault notified by the
Framework (i.e. condition that blocks or threat its proper execution) through
the transition and retention into its safe state, by blocking its safety-related
functions and maintaining all outputs to their restrictive state (typically de-
energized), till the execution of a defined maintenance procedure.

PHA_REC_
06

It is recommended to avoid dynamic
reconfiguration of software after a failure ,
i.e. remapping the logical architecture back
onto the restricted resources left
functioning (highly recommended for SIL3-
SIL4 Applications, EN 50128 Table A.3).

Fault management

detection, isolation,
notification and reaction to
faults, and the recognition
of system status with
respect to errors and
failures

Undue

Interaction of the Fault
management services with
other Service or Application
functions.

Incorrect execution of Service
or Application functions due to
Fault management services.

Potential unsafe behaviour of the Platform
in the execution of the safety-related
Application functions due to an incorrect
management of fault condition(s).

FDF_SH_02
HA_FLT_
05

The Framework shall provide services for Fault
detection and isolation without any disturb or
unintended effects on the execution and
performance (e.g. latency/jitter, sampling rate
or resource reservation) of other Service and
Application functions.

HA_FLT_
06

The Framework shall verify the
capability to notify a Fault condition
under a representative set of failure
scenarios.

HA_FLT_0
8

The Framework, after the detection of a
condition that blocks or threats the
proper execution of Service or Application
functions (fatal Fault), shall notify a Fault
condition to all the Application functions
involved, in a time that is compatible with
their timely transition into safe state (i.e.
not later than the maximum time for
failure detection and negation specified
by the Applications).

HA_FLT_0
9

The framework shall manage the
interaction between Service and
Application functions:
_avoiding that Service functions can
force the outputs independently from
the Application function when active,
during operation (normal and degraded
phases);
_preventing the access to any off-line
service (e.g. validation and verification
support) at the power up, and during the
initialization and the operating (nominal
and degraded) phases;
_guarantying the retention of a safe
state after a fatal Fault (i.e. condition
that blocks or threats the proper
execution of Service or Application
functions).

HA_FLT
_10

The Framework shall detect, isolate, notify and react
to fault with the highest SIL assigned to the safety-
related Application functions to be executed.

PHA_AC_
07

The Application function shall react to any fatal Fault notified by the
Framework (i.e. condition that blocks or threat its proper execution) through
the transition and retention into its safe state, by blocking its safety-related
functions and maintaining all outputs to their restrictive state (typically de-
energized), till the execution of a defined maintenance procedure.

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

ANNEX B: Functional Security Assessment Requirements table

This annex contains the complete table of the Functional Security Assessment Requirements for IEC 62443 certification mapped with already-
defined requirements in D2.5, countermeasures and software components that will implement it.

Reference Name Requirement Description Previous Requirement Countermea-sure 624443 - Level
SW component implementation

/Clarification
Security Objectives

Access Control Authorization

The IACS embedded device shall provide capability for user configured Access
Control Functionality to facilitate automated enforcement of a site specific
Access Control Policy based upon authenticated entities. NA

Role Based Access
The IACS embedded device Access Control Functionally shall provide the
capability to support role based access control policies.

None C4 >1

"UserAccountManager":user management
is required, which prevents non-
authorized access on FDF services and
sensitive data

SO1, SO2

Dual Approval Access

The IACS embedded device Access Control Functionally shall
provide the capability to support dual-approval mechanisms as an access
control option for user modification or control of
critical parameters or actions.

None C1, C2 >1 "SecurityMonitoringManager" Approval
for access can be granted by the system
and by notifying administrator

SO1, SO2, SO4

Least Privilege Default Access
New Access Accounts for the Access Control shall be created
by default based on least privileges requiring explicit action by
the account administrator to raise privilege level.

None C3, C4 >1 "UserAccountManager"shall apply least
privilege philosophy

SO1

Administrator User Role

The IACS embedded device Access Control Functionally shall
provide support for an administrator user role which has the
ability to create user accounts and manage the privileges of
other users

None C3, C4 >1

"UserAccountManager" only administrator
user can create new user accounts and
manage their privileges. The authorization
will come from
"SecurityMonitoringManager"

SO1

Administrator Support
Functions

The IACS embedded device shall provide the administrator the
ability list of all current user accounts and login history such as
time of last login

None NA >2
"SecurityMonitoringManager" shall
provide a way to list of user accounts and
login history

SO1

Authentication by User ID and
Password

The IACS embedded device shall support user authentication
via entry of user ID and password.

NA
"SecurityMonitoringManager"

SO1

FSA-AC-2.1.1 User Management of Password
The IACS embedded device shall provide the capability for
[IACS Administrator] or the user to modify password within
their control without impacting normal operation

None C1, C2 ALL
"SecurityMonitoringManager"

SO1

FSA-AC-2.1.2 Monitor Unsuccessful Login Attempts
The IACS embedded device shall monitor and record the
number and time of unsuccessful login attempts per user id
since the last successful login.

None NA ALL
"SecurityMonitoringManager": takes care
of the most security functions namely:
User authentication, access authorization,
application deployment, and continuous
security monitoring.

SO1

FSA-AC-2.1.3 Record Successful Logins
The IACS embedded device shall monitor and record the date
and time of the last successful login.

None NA ALL
"SecurityMonitoringManager"

SO1

FSA-AC-2.1.4 Display Previous Login History

Following successful user authentication the IACS embedded
device shall display the date and time of the last successful
login plus the number of unsuccessful login attempts for this
user ID since that time.

None NA >2

"SecurityMonitoringManager"

SO1

Requirement ID

FSA-AC-1

FSA-AC-2.1

FSA-AC-1.1

FSA-AC-1.2

FSA-AC-1.3

FSA-AC-1.4

FSA-AC-1.5

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

Tabla 25. Security requirements

Reference Name Requirement Description Previous Requirement Countermea-sure 624443 - Level
SW component implementation

/Clarification
Security ObjectivesRequirement ID

FSA-AC-2.1.5 Password Modification Reminder

Following successful user authentication the IACS embedded
device shall provide the capability for automated reminder of
need to modify user password after [[IACS administrator
defined time] has passed since the last password modification.

None NA >2

"SecurityMonitoringManager"

SO1

FSA-AC-2.1.6 Password Strength Enforcement

The IACS embedded device shall provide the capability to only
accept user requested password updates for passwords that
meet [[IACS administrator configured] criteria for strong
passwords based on minimum length, use of upper / lower
case and non-alpha characters.

None C2 >2

"SecurityMonitoringManager"

SO1

FSA-AC-2.1.7
Action for High Number of Unsuccessful

Login

The IACS embedded device shall provide option to take [IACS
administrator configured] action if the number of unsuccessful
login attempts exceeds a user configured value with in a [user
configured time period].

None C2 ALL

"SecurityMonitoringManager"

SO1

FSA-AC-2.1.8 Minimum Password Capability
User authentication through manual login with password shall
support a minimum of 6 character passwords to be used

None C2 ALL
"SecurityMonitoringManager"

SO1

FSA-AC-2.1.9 Clear Text Passwords
The IACS embedded device shall not internally store or send
password over shared networks in clear text format.

None NA ALL
"SecurityMonitoringManager"

SO5

FSA-AC-2.1.10 Cryptographic Password Protection
The IACS embedded device passwords shall have
cryptographic protection for transmission over networks

S4R_FDF_412 C2, C5 >2
"CryptoManager"

SO5

FSA-AC-2.1.11 Access Control for All Exposed Services
The IACS embedded device user authentication shall cover
access to all services supported by the device during normal
operation

None NA ALL

"SecurityMonitoringManager"

SO1, SO2, SO3

Other Authentication Methods
The IACS embedded device authentication may provide
optional interfaces to support alternative user authentication
methods.

S4R_FDF_419 Not required

Two Factor Authentication
(local network)

The IACS embedded device Access Control Functionally shall
support two factor authentication mechanisms.

None C1, C2 >2 "SecurityMonitoringManager" Username
and password and the USB or smartcard
with user credentials

SO1, SO2

Two Factor Authentication
(remote)

The IACS embedded device Access Control Functionally shall
support two factor authentication mechanisms for remote
access.

None NA ALL "SecurityMonitoringManager"if remote
access is required

SO1, SO2

Authentication Feedback

The IACS embedded device shall obscure feedback of
authentication information during the authentication process to protect the
information from possible exploitation/use by
unauthorized individuals.

None NA ALL

"CryptoManager"

SO1, SO2

System Use Notification

The IACS embedded device authentication shall provide
option for presenting an [IACS administrator] provided "system
use notification message" before granting system access
informing potential users they are entering a redistricted area.

None NA ALL

"SecurityMonitoringManager"

Local Session Locking Timeout
The IACS embedded device authentication shall provide
option for session locking after a [IACS administrator]
specified period of time of inactivity for the session.

None C6 >1

"SecurityMonitoringManager"

FSA-AC-2.2

FSA-AC-2.3

FSA-AC-2.4

FSA-AC-2.5

FSA-AC-3

FSA-AC-4

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

Reference Name Requirement Description Previous Requirement Countermea-sure 624443 - Level
SW component implementation

/Clarification
Security ObjectivesRequirement ID

Remote Session Termination
Timeout

The IACS embedded device authentication shall provide
option for automated session termination for remote sessions
after a user specified period of time of inactivity for the
session.

None C6 >1

"SecurityMonitoringManager"

Wireless Access
The IACS embedded device wireless access must be
protected via sufficient authentication and encryption
protection.

None NA NA

Not applicable

Physical Disable Wireless
Access

IACS embedded products that provide wireless access must
provide the option to be physically disabled by the end user of
the product by a method unable to be overridden by SW or
user soft configuration

None NA ALL
Not applicable, since wireless it is not
considered

Device Authentication

The IACS embedded device shall provide authentication
methods for device identification prior to establishing a
connection to support Access Management and Use Control
Functionality.

None C1, C8 NA

Failures in Cryptography
Services

IACS embedded device shall not be dependent on outside
cryptography services that could result in denial of service for
the embedded device if the service were no longer available

None C1, C5 ALL

"CryptoManager" TPM by means of TPM

SO4, SO5, SO6

Basic Device Authentication
The IACS embedded device shall provide at least basic
measures for authentication of device identification

None C1, C5 >1

"CryptoManager" by means of TPM

SO4, SO5, SO6

Cryptographic Device
Authentication

The IACS embedded device shall provide cryptographic
measures for authentication of device identification

None C1, C5 >2
"CryptoManager" by means of TPM

SO4, SO5, SO6

Creation of Audit Trail
The IACS embedded device shall provide option for generation
and storage of audit information for post security incident and
process improvement activities.

NA

Configuration of Audit Events
The IACS embedded device shall provide for [IACS
administrator] configuration of what events are included in list
of auditable events.

S4R_FDF_430 NA >2
"SecurityMonitoringManager"

SO1, SO2

Content of Audit Record
The IACS embedded device shall provide for [IACS
administrator] configuration of required information for each
auditable event.

None NA NA
"SecurityMonitoringManager"

SO1, SO2

FSA-UC-3.2.1 Time Stamp for Audit
The IACS embedded device shall provide time stamps for use
in audit record generation based on "system time".

None NA >1
"SecurityMonitoringManager"

SO1, SO2

FSA-UC-3.2.2 Information for Non-repudiation

The IACS embedded device or the responsible higher level
component shall provide the capability to include in the audit
trail which device or individual initiated or performed a
particular action.

None NA >2

"SecurityMonitoringManager"

SO1, SO2

FSA-UC-3.2.3
Additional Content for Audit

Record

The IACS embedded device shall provide the capability to
include additional, more detailed information in the audit
records for audit events identified by type, location, or subject.

None NA >2

"SecurityMonitoringManager"

SO1, SO2

FSA-UC-3.2

FSA-AC-5

FSA-UC-1

FSA-UC-1.1

FSA-UC-2

FSA-UC-2.1

FSA-UC-2.2

FSA-UC-2.3

FSA-UC-3

FSA-UC-3.1

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

Reference Name Requirement Description Previous Requirement Countermea-sure 624443 - Level
SW component implementation

/Clarification
Security ObjectivesRequirement ID

 Protection of Audit Information
The IACS embedded device shall protect audit information and audit tools
from unauthorized access, modification, and
deletion.

None C1, C2, C3, C4 NA
"SecurityMonitoringManager"

SO1, SO2

FSA-UC-3.3.1
 Audit Fault Warning

The IACS embedded device or a higher level component shall
alert appropriate organizational officials in the event of an auditprocessing
failure and support additional configurable actions (e.g., overwrite oldest
audit records, stop generating audit records).

None NA >2

"SecurityMonitoringManager"

SO1, SO2

FSA-UC-3.3.2
Basic Protection of Audit The IACS embedded device shall provide basic noncryptographic measures for

protection of audit information
None NA >1 "CryptoManager" -- Digital signature,

digital message receipts, time stamps

SO1, SO2

FSA-UC-3.3.3
Cryptographic Protection of

Audit Information
The IACS embedded device shall provide cryptographic
measures for protection of audit information

None C1, C5 >2
"CryptoManager"

SO4

System Wide Audit
The IACS embedded device shall provide capability to pass
[IACS administrator configurable] auditable events to another
device for creation of a higher level consolidated audit log.

None NA >2
"SecurityMonitoringManager"

SO4

 Audit Report Generation

The IACS embedded device or the responsible higher level
component shall provide an audit reduction and report
generation capability for audit reduction, review, and reporting
tools support after-the-fact investigations of security incidents
without altering original audit records.

None NA >1

"CryptoManager"

SO4

Integrity of Data in Transit
The IACS embedded device shall protect the integrity of
transmitted information

NA

Insertion of Data Packets
The IACS embedded device shall protect the integrity of
transmitted information against insertion of data packets not
intended to be part of the transmitted data

S4R_FDF_410 C5 >1
"SecurityMonitoringManager"

SO5

Deletion of Data Packets
The IACS embedded device shall protect the integrity of
transmitted information against deletion of data packets

None NA >1
"SecurityMonitoringManager"

SO5

Excessive Delay of Data
Packets

The IACS embedded device shall protect the integrity of
transmitted information against delay of data packets by more
than tolerable by the intended application

None NA >1

"SecurityMonitoringManager"

SO5

Re-sequencing or Replay of
Data Packets

The IACS embedded device shall protect the integrity of
transmitted information against re-sequencing or replay of
data packets

None NA >1
"SecurityMonitoringManager"

SO5

Basic Modification of
Transmitted Data

The IACS embedded device shall employ basic mechanisms
to recognize changes to information during communication
independent of the basic communication protocol stack

None NA >1
From the functional safety, CRC can be
used to recognize changes

SO5

Modification of Transmitted
Data

The IACS embedded device shall employ cryptographic
mechanisms to recognize changes to information during
communication

None C1, C5 >1
"SecurityMonitoringManager"

SO5

Point to point Communications

All point to point communication connections to the IACS
embedded device shall provide sufficient security measures
to insure communications only take place with properly
authorized parties

S4R_FDF_410 C1, C5 >2

"SecurityMonitoringManager"

SO1, SO5
FSA-DI-1.7

FSA-UC-3.3

FSA-UC-3.4

FSA-UC-3.5

FSA-DI-1

FSA-DI-1.1

FSA-DI-1.2

FSA-DI-1.3

FSA-DI-1.4

FSA-DI-1.5

FSA-DI-1.6

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

Reference Name Requirement Description Previous Requirement Countermea-sure 624443 - Level
SW component implementation

/Clarification
Security ObjectivesRequirement ID

FSA-DI-1.7.1
Session Creation

All point to point communication connections to the IACS
embedded device shall provide measures to properly identify
and authenticate the other party prior to approving the
connection

Nonce C1, C6, C5 NA

"SecurityMonitoringManager"

SO1, SO5

FSA-DI-1.7.2
Basic Session Protection

All point to point communication connections to the IACS
embedded device shall provide measures to protect the
integrity of authorized sessions and prevent others from
participating in or stealing the authorized session

S4R_FDF_411 C1, C6, C5 >1

"SecurityMonitoringManager"

SO1, SO5

FSA-DI-1.7.3
Crypto Session Protection

All point to point communication connections to the IACS
embedded device shall provide cryptographic measures to
protect the integrity of authorized sessions and prevent others
from participating in or stealing the authorized session

None C1, C6, C5 >1

"Network Manager" "Crypto Manager"

SO1, SO2, SO3, SO5

FSA-DI-1.7.4
Session Closure

All point to point communication connections to the IACS
embedded device shall have a method to close the session
when the purpose of the session has be completed or session
is no longer required

None C6 >2

"SecurityMonitoringManager"

SO1, SO2, SO3, SO5

FSA-DI-1.7.5
Session Timeout

All point to point communication connections to the IACS
embedded device shall have a method to close the session
when it has been open or inactive for longer than a [IACS
administrator] configured time

None C6 >2

"SecurityMonitoringManager"

SO1, SO2, SO3, SO4,
SO5

Multicast / Broadcast
Communications

All multicast / broadcast communication connections to the
IACS embedded device shall provide product measures for
[IACS administrator] to manage security of broadcast
communications or sufficient information disclosure and
security measures to allow proper management of its
capabilities

None C5 NA

FSA-DI-1.8.1
Multicast Restrictions

The IACS embedded device shall only use critical
information from multicast transmissions for which it can
properly validate the source and integrity of the transmission

None NA >2
"SecurityMonitoringManager"

SO1, SO5

FSA-DI-1.8.2
Multicast Reception Protection

The IACS embedded device using critical data from a
multicast source shall verify multicast transmissions continue
to originate from a properly validated source and verify
integrity of the transmission

None NA >2

"SecurityMonitoringManager"

SO1, SO5

FSA-DI-1.8.3
Multicast Transmission

Restrictions

The IACS embedded device multicast transmissions shall
include measures to only allow properly authorized devices to
subscribe to its multicast transmission or alternatively clearly
document means for users to restrict the propagation of the
multicast signal within a controlled region of the network

None NA >2

"SecurityMonitoringManager"

SO1, SO5

Verify Input Data Syntax
The IACS embedded device shall check information for
reasonability of values, completeness, validity, and
authenticity

S4R_FDF_411 >1
"SecurityMonitoringManager"

SO1, SO5

Handling Error Conditions
The IACS embedded device shall identify and handle error
conditions in an expeditious manner without providing
information that could be exploited by adversaries

None NA >1
"SecurityMonitoringManager"

SO1, SO5

Integrity of Data at Rest
Measures

The IACS embedded device shall protect the integrity of data
stored within the device by measures independent of access
control

NA

FSA-DI-1.8

FSA-DI-1.9

FSA-DI-1.10

FSA-DI-2

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

Reference Name Requirement Description Previous Requirement Countermea-sure 624443 - Level
SW component implementation

/Clarification
Security ObjectivesRequirement ID

Protection of Static Data
The IACS embedded device shall protect against
unauthorized changes to software and information

S4R_FDF_429 C1, C2, C3, C4 NA "SecurityMonitoringManager" It is
essential the protection of configuration
files and sensitive data

SO1, SO2, SO3, SO4

FSA-DI-2.1.1
Disable Unused Ports

The IACS embedded device shall provide the user the
capability to disable communication services and ports that
are not required for normal online use for their particular
application or not covered by Access Control measures

None None ALL

"SecurityMonitoringManager"

SO1, SO5, SO6

FSA-DI-2.1.2
Write Protection

The IACS embedded device shall have independent hardware
and/or software measures to prevent writing to static data

None C1, C2 >2 "SecurityMonitoringManager" SO1, SO2, SO3, SO4

Detection of Unauthorized
Changes

The IACS embedded device shall employ mechanisms to
automatically recognize changes to static data stored in
memory able to be modified but not automatically modified
during normal operation

NA

FSA-DI-2.2.1
Executable Code Basic Mod

Protection

The IACS embedded device shall implement basic means to
detect modifications to executable code if susceptible to this
type of threat within vendor published time interval

None NA >1
"SecurityMonitoringManager" together
with "FrameworkManager" protection
against malicious software, blacklisting,
checker

SO1, SO2, SO3, SO4,
SO5, SO6

FSA-DI-2.2.2
Executable Code Crypto Mod

Protection

The IACS embedded device shall implement cryptographic
means to detect modifications to executable code if
susceptible to this type of threat within vendor published time
interval

None C1, C5 >2

"Security Manager"

SO1, SO2, SO3

FSA-DI-2.2.3
App Configuration Basic

Protection

The IACS embedded device shall implement basic means to
detect unauthorized modification, deletion or insertion of user
application configuration data within vendor published time
interval

None NA >1 "SecurityMonitoringManager" -
blacklisting, whitelisting, checker

SO1, SO2, SO3, SO4

FSA-DI-2.2.4
App Configuration Crypto

Protection

The IACS embedded device shall implement cryptographic
means to detect unauthorized modification, deletion or
insertion of user application configuration data within vendor
published time interval

None C1,C5 >2

"CryptoManager"

SO4

FSA-DI-2.2.5
Verify Application Specific

Syntax

The IACS embedded device shall check application input and
program configuration information for reasonability of values,
completeness, validity, and correctness of syntax or include
crypto protection of application against code modification
(FSA-DI-2.2.4)

None NA >1

"SecurityMonitoringManager"

SO2, SO3

FSA-DI-2.2.6
OS Basic Configuration

Protection

New Access Accounts for the Access Control shall be created
by default based on least privileges requiring explicit action by
the account administrator to raise privilege level.

None NA >1

Statically created accounts

SO2, SO3

FSA-DI-2.2.7
OS Crypto Configuration

Protection

The IACS embedded device shall implement cryptographic
means to detect modification, deletion or insertion of data that
is capable of modifying the behavior or operation of the
product's operating system such as exception vectors or
scheduling, if an OS is used by the product.

None C1, C5 >2

"CryptoManager"

SO2, SO3

FSA-DI-2.2.8 Basic Executable Code Insert
Protection

The IACS embedded device shall implement means to
prevent or detect insertion of malicious code within vendor
published time interval

None C1, C3, >1
"SecurityMonitoringManager"

SO2, SO3

FSA-DI-2.2

FSA-DI-2.1

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

Reference Name Requirement Description Previous Requirement Countermea-sure 624443 - Level
SW component implementation

/Clarification
Security ObjectivesRequirement ID

FSA-DI-2.2.9
Crypto Executable Code Insert

Protection

The IACS embedded device shall implement means to
prevent or cryptographic means to detect insertion of
malicious code within vendor published time interval

None C1, C3, C5 >2
"Security Manager"

SO2, SO3

FSA-DI-2.2.10
Non Execution of Data

The IACS embedded device shall have separate memory
spaces for data versus executable code and have measures
to prevent execution of code located in data space

None C9 >2
"SecurityMonitoringManager"

SO2, SO3

Auto Verify Security Functions
The IACS embedded device shall periodically verify the
correct operation of security protection functions and notify
system administrator when anomalies are discovered.

None NA >2
"SecurityMonitoringManager"

SO2, SO3

Confidentiality of Data in
Transit

The IACS embedded device shall protect the confidentiality of
transmitted information

NA

No Clear Text in Data Transit
The IACS embedded device shall not send any data in clear
text format for basic prevention of unauthorized disclosure of
information during communication

None C5 ALL
"CryptoManager"

SO1, SO5

Cryptographic Protection for
Data Confidentiality

The IACS embedded device shall employ cryptographic
mechanisms to prevent unauthorized disclosure of information
during communication

S4R_FDF_412 C5 >1
"CryptoManager" Due to time
performance restrictions, it is to be
considered only sensitive information to
be encrypted or all data.

SO4

Cryptographic Key
Management

The IACS embedded device shall provide automated support
for automation of cryptographic key management

S4R_FDF_412 C1 >2
"CryptoManager"

SO1, SO2, SO4, SO5

Confidentiality of Data at Rest
The IACS embedded device shall provide measures to protect
confidentiality of stored information

NA

Basic Confidentiality of Data at
Rest

The IACS embedded device shall use storage in non clear text
formats to provide measures for sensitive data storage to
protect confidentiality of stored information

S4R_FDF_412 C1, C5 >1
"CryptoManager" base64 encoding

SO4

Crypto Confidentiality of Data
at Rest

The IACS embedded device shall provide cryptographic
measures for sensitive data storage to protect confidentiality of stored
information

S4R_FDF_412 C1, C5 >2
"CryptoManager"

SO4

Cryptographic Mechanisms

The IACS embedded device shall document the cryptographic
mechanisms used and any independent validation of the
measures so that users can verify if the mechanisms used
comply with applicable laws, directives, policies, regulations,
standards, and guidance for their target market

S4R_FDF_412 C1 >1

"CryptoManager"

SO4

Information Flow Enforcement

The IACS embedded device shall provide means to enforce
assigned authorizations for controlling the flow of information
outside the embedded controller zone and between
interconnected systems in accordance with user specific
policy

None C3, C4 ALL

"SecurityMonitoringManager"

SO1, SO2, SO3

Application Partitioning
The IACS embedded device shall separate data acquisition
services, from management functionality

S4R_FDF_425,
S4R_FDF_426

C9 >1
"SecurityMonitoringManager"

SO2, SO3

Security Function Isolation

The IACS embedded device shall isolate security functions
from non-security functions by means of partitions, domains,
etc., including control of access to and integrity of, the
hardware, software, and firmware that perform those security
functions

S4R_FDF_425,
S4R_FDF_426,
S4R_FDF_427

C4 >2
"SecurityMonitoringManager" Function is
like an application in the FDF

SO3

FSA-DI-3

FSA-DC-1

FSA-DC-1.1

FSA-DC-1.2

FSA-DC-1.3

FSA-DC-2

FSA-DC-2.1

FSA-DC-2.2

FSA-DC-3

FSA-RDF-1

FSA-RDF-2

FSA-RDF-3

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

Reference Name Requirement Description Previous Requirement Countermea-sure 624443 - Level
SW component implementation

/Clarification
Security ObjectivesRequirement ID

 Shared System Resources

The IACS embedded device shall prevent unauthorized and
unintended information transfer via shared system resources
where it supports connection sessions from users with
different levels of access

S4R_FDF_409 C1, C3, C4 >2

"SecurityMonitoringManager"

SO1, SO2, SO3

 Incident Response Support
The IACS embedded device may provide features to support
configurable automated incident notification services to those
not currently connected to the IACS

None NA >2
"SecurityMonitoringManager", by means
of e-mail, text messages, or any other
means

None

Denial of Service Protection
The IACS embedded device shall protect against or limit the
effects of denial of service attacks

S4R_FDF_415 C7 ALL "SecurityMonitoringManager", by filtering
packets that can provoke a DoS

None

Data Flooding Protection
The IACS embedded device shall be capable of taking
mitigating actions to attempt to maintain primary function
communications while under standard DOS style attacks

S4R_FDF_417 C7 >2
"SecurityMonitoringManager"

SO2, SO3, SO5

Protocol Fuzzing Protection
The IACS embedded device communications shall be tolerant
to standard protocol fuzzing attacks for protocols supported
by the device

NA C7 ALL
"SecurityMonitoringManager"

SO2, SO3, SO5

Deterministic Loss of Comm
The IACS embedded device communications shall provide
documented or configurable default states for IO and other
transmitted variable to be applied upon loss of
communications

NA NA ALL

"SecurityMonitoringManager"

SO5, SO6

Notification of Attack

The IACS embedded device communications shall be able to
notify the higher level system if experiencing heavy
communication demands as would experience under DOS
attack

NA NA >1
"SecurityMonitoringManager", by means
of e-mail, text messages, or any other
means or communicating to a higher
system

None

Preservation of Essential
Services

The IACS embedded device communications shall be able to
maintain essential services under flooding attack, as defined
in robustness testing specification

S4R_FDF_417 C7 ALL "SecurityMonitoringManager", safety-
critical applications shall be protected

SO2, SO3, SO5

IACS Backup

The IACS embedded device or its support utilities shall
provide user functionality to facilitate creation of backups of
user-level and system-level information (including system
security state information) contained in the IACS

None NA ALL
"SecurityMonitoringManager" shall create
a backup for recovery

None

IACS Recovery
The IACS embedded device shall provide user functionality to
allow the IACS to be recovered and reconstituted to
previously saved IACS Backup after a disruption or failure

None NA ALL
"SecurityMonitoringManager" shall be
able to be recovered and reconstituted to
previously version

Noe

FSA-RDF-4

FSA-TRE-1

FSA-NRA-2

FSA-NRA-3

FSA-NRA-1

FSA-NRA-1.1

FSA-NRA-1.2

FSA-NRA-1.3

FSA-NRA-1.4

FSA-NRA-1.5

D2.3 – Report on ‘TCMS Framework Concept’ Design,

Security Concepts, and Assessment

Safe4RAIL D2.3

	Executive Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 About this document
	1.2 Functional Distribution Framework Concept
	1.2.1 Motivation
	1.2.2 High-level requirements
	1.2.2.1 Technical Requirements
	1.2.2.2 Non-technical characteristics

	1.2.3 Integrated Modular Platform Concept

	Chapter 2 Design concept
	2.1 Introduction
	2.2 Conceptual view
	2.2.1 Elements
	2.2.1.1 Variable
	2.2.1.2 Message
	2.2.1.3 SharedMemory
	2.2.1.4 Function
	2.2.1.5 Process
	2.2.1.6 Partition
	2.2.1.7 Schedule

	2.2.2 Mapping of elements

	2.3 Structural view – software components
	2.3.1 Hardware Access Services
	2.3.1.1 IODriverManager
	2.3.1.2 NICDriverManager
	2.3.1.3 WDDriverManager
	2.3.1.4 ECUDriverManager

	2.3.2 Operating System Services
	2.3.2.1 FileManager
	2.3.2.2 MemoryManager
	2.3.2.3 ConcurrencyManager
	2.3.2.4 TimeManager
	2.3.2.5 SocketManager
	2.3.2.6 LibraryManager
	2.3.2.7 ExecutionManager

	2.3.3 Functional Distribution Services
	2.3.3.1 VariableManager
	2.3.3.2 MessageManager
	2.3.3.3 ConfigurationManager
	2.3.3.4 NetworkManager
	2.3.3.5 MonitoringManager
	2.3.3.6 IOManager
	2.3.3.7 SynchronizationManager
	2.3.3.8 FunctionManager
	2.3.3.9 FrameworkManager
	2.3.3.10 HealthManager
	2.3.3.11 LogManager
	2.3.3.12 TopologyManager
	2.3.3.13 Redundancy Manager
	2.3.3.14 DeploymentManager
	2.3.3.15 CryptoManager
	2.3.3.16 UserAccountManager
	2.3.3.17 SecurityMonitoringManager

	2.3.4 FDF Detailed structural view

	2.4 Behavioural view
	2.4.1 Configuration phase
	2.4.2 Initialization phase
	2.4.2.1 Driver initialisation
	2.4.2.2 Data initialisation
	2.4.2.3 Function initialisation

	2.4.3 Execution phase
	2.4.3.1 Data monitoring
	2.4.3.2 Data distribution
	2.4.3.3 Global synchronisation
	2.4.3.4 Watchdog refreshing
	2.4.3.5 Input reading
	2.4.3.6 Output writing
	2.4.3.7 Redundancy management
	2.4.3.8 Data logging
	2.4.3.9 Data user function execution
	2.4.3.10 Data topology discovery
	2.4.3.11 Deadline checking
	2.4.3.12 Disable execution
	2.4.3.13 Load checking
	2.4.3.14 Output checking
	2.4.3.15 Temperature checking
	2.4.3.16 Reset platform
	2.4.3.17 Executable and configuration deployment

	Chapter 3 Safety concept
	3.1 FDF Functional model
	3.2 FDF PHA Methodology
	3.3 FDF PHA Results
	3.3.1 System Hazards
	3.3.2 Countermeasures
	3.3.3 Application conditions
	3.3.4 Recommendations
	3.3.5 CONNECTA functional requirements mapping

	Chapter 4 Security concept
	4.1 Introduction
	4.2 Motivation
	4.3 Scope
	4.4 Objective
	4.5 Risk analysis – Security objectives
	4.5.1 FDF brief description
	4.5.2 Security dimensions or attributes
	4.5.3 System assets
	4.5.4 Use case: Bogie Monitoring System
	4.5.4.1 General Description
	4.5.4.2 Operational Description
	4.5.4.3 Assets Used
	4.5.4.4 Possible Threats/Attacks

	4.5.5 Security objectives

	4.6 Security requirements
	4.7 Risk assessment
	4.7.1 Security Level Target
	4.7.2 Determination of the severity of the risk

	4.8 Security countermeasures
	4.8.1 Countermeasure 1: Trusted Platform Module (TPM)
	4.8.2 Countermeasure 2: Password policy
	4.8.3 Countermeasure 3: User profiles and application profiles policies
	4.8.4 Countermeasure 4: Role-based access control (RBAC)
	4.8.5 Countermeasure 5: Encryption
	4.8.6 Countermeasure 6: Session bindings
	4.8.7 Countermeasure 7: Network limited bandwidth
	4.8.8 Countermeasure 8: Asset inventory
	4.8.9 Countermeasure 9: Software-based memory protection unit

	4.9 Functional Security Assessment Requirements
	4.10 Conclusions and next steps

	Chapter 5 Assessment of the safety and security concepts
	5.1 Requirements given to the FDF design
	5.1.1 General
	5.1.2 Safety
	5.1.3 Security

	5.2 Assessment of the safety concept
	5.2.1 Requirements
	5.2.2 Approach and findings
	5.2.3 Appraisal

	5.3 Assessment of the security concept
	5.3.1 Requirements
	5.3.2 Approach and findings
	5.3.3 Appraisal

	Chapter 6 Integration of the Framework in the IMP
	Chapter 7 Summary and conclusion
	Chapter 8 List of Abbreviations
	Chapter 9 Bibliography
	ANNEX A: FDF Process Hazard Analysis
	ANNEX B: Functional Security Assessment Requirements table
	2º (36-124-Annex A) Safe4RAIL-D2.3-TCMS-framework-concept-PU-M18_with-Annex_v1.2.pdf
	Executive Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 About this document
	1.2 Functional Distribution Framework Concept
	1.2.1 Motivation
	1.2.2 High-level requirements
	1.2.2.1 Technical Requirements
	1.2.2.2 Non-technical characteristics

	1.2.3 Integrated Modular Platform Concept

	Chapter 2 Design concept
	2.1 Introduction
	2.2 Conceptual view
	2.2.1 Elements
	2.2.1.1 Variable
	2.2.1.2 Message
	2.2.1.3 SharedMemory
	2.2.1.4 Function
	2.2.1.5 Process
	2.2.1.6 Partition
	2.2.1.7 Schedule

	2.2.2 Mapping of elements

	2.3 Structural view – software components
	2.3.1 Hardware Access Services
	2.3.1.1 IODriverManager
	2.3.1.2 NICDriverManager
	2.3.1.3 WDDriverManager
	2.3.1.4 ECUDriverManager

	2.3.2 Operating System Services
	2.3.2.1 FileManager
	2.3.2.2 MemoryManager
	2.3.2.3 ConcurrencyManager
	2.3.2.4 TimeManager
	2.3.2.5 SocketManager
	2.3.2.6 LibraryManager
	2.3.2.7 ExecutionManager

	2.3.3 Functional Distribution Services
	2.3.3.1 VariableManager
	2.3.3.2 MessageManager
	2.3.3.3 ConfigurationManager
	2.3.3.4 NetworkManager
	2.3.3.5 MonitoringManager
	2.3.3.6 IOManager
	2.3.3.7 SynchronizationManager
	2.3.3.8 FunctionManager
	2.3.3.9 FrameworkManager
	2.3.3.10 HealthManager
	2.3.3.11 LogManager
	2.3.3.12 TopologyManager
	2.3.3.13 Redundancy Manager
	2.3.3.14 DeploymentManager
	2.3.3.15 CryptoManager
	2.3.3.16 UserAccountManager
	2.3.3.17 SecurityMonitoringManager

	2.3.4 FDF Detailed structural view

	2.4 Behavioural view
	2.4.1 Configuration phase
	2.4.2 Initialization phase
	2.4.2.1 Driver initialisation
	2.4.2.2 Data initialisation
	2.4.2.3 Function initialisation

	2.4.3 Execution phase
	2.4.3.1 Data monitoring
	2.4.3.2 Data distribution
	2.4.3.3 Global synchronisation
	2.4.3.4 Watchdog refreshing
	2.4.3.5 Input reading
	2.4.3.6 Output writing
	2.4.3.7 Redundancy management
	2.4.3.8 Data logging
	2.4.3.9 Data user function execution
	2.4.3.10 Data topology discovery
	2.4.3.11 Deadline checking
	2.4.3.12 Disable execution
	2.4.3.13 Load checking
	2.4.3.14 Output checking
	2.4.3.15 Temperature checking
	2.4.3.16 Reset platform
	2.4.3.17 Executable and configuration deployment

	Chapter 3 Safety concept
	3.1 FDF Functional model
	3.2 FDF PHA Methodology
	3.3 FDF PHA Results
	3.3.1 System Hazards
	3.3.2 Countermeasures
	3.3.3 Application conditions
	3.3.4 Recommendations
	3.3.5 CONNECTA functional requirements mapping

	Chapter 4 Security concept
	4.1 Introduction
	4.2 Motivation
	4.3 Scope
	4.4 Objective
	4.5 Risk analysis – Security objectives
	4.5.1 FDF brief description
	4.5.2 Security dimensions or attributes
	4.5.3 System assets
	4.5.4 Use case: Bogie Monitoring System
	4.5.4.1 General Description
	4.5.4.2 Operational Description
	4.5.4.3 Assets Used
	4.5.4.4 Possible Threats/Attacks

	4.5.5 Security objectives

	4.6 Security requirements
	4.7 Risk assessment
	4.7.1 Security Level Target
	4.7.2 Determination of the severity of the risk

	4.8 Security countermeasures
	4.8.1 Countermeasure 1: Trusted Platform Module (TPM)
	4.8.2 Countermeasure 2: Password policy
	4.8.3 Countermeasure 3: User profiles and application profiles policies
	4.8.4 Countermeasure 4: Role-based access control (RBAC)
	4.8.5 Countermeasure 5: Encryption
	4.8.6 Countermeasure 6: Session bindings
	4.8.7 Countermeasure 7: Network limited bandwidth
	4.8.8 Countermeasure 8: Asset inventory
	4.8.9 Countermeasure 9: Software-based memory protection unit

	4.9 Functional Security Assessment Requirements
	4.10 Conclusions and next steps

	Chapter 5 Assessment of the safety and security concepts
	5.1 Requirements given to the FDF design
	5.1.1 General
	5.1.2 Safety
	5.1.3 Security

	5.2 Assessment of the safety concept
	5.2.1 Requirements
	5.2.2 Approach and findings
	5.2.3 Appraisal

	5.3 Assessment of the security concept
	5.3.1 Requirements
	5.3.2 Approach and findings
	5.3.3 Appraisal

	Chapter 6 Integration of the Framework in the IMP
	Chapter 7 Summary and conclusion
	Chapter 8 List of Abbreviations
	Chapter 9 Bibliography
	ANNEX A: FDF Process Hazard Analysis
	ANNEX B: Functional Security Assessment Requirements table

	3º (Annex B) Safe4RAIL-D2.3-TCMS-framework-concept-PU-M18_with-Annex_v1.2.pdf
	Executive Summary
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 About this document
	1.2 Functional Distribution Framework Concept
	1.2.1 Motivation
	1.2.2 High-level requirements
	1.2.2.1 Technical Requirements
	1.2.2.2 Non-technical characteristics

	1.2.3 Integrated Modular Platform Concept

	Chapter 2 Design concept
	2.1 Introduction
	2.2 Conceptual view
	2.2.1 Elements
	2.2.1.1 Variable
	2.2.1.2 Message
	2.2.1.3 SharedMemory
	2.2.1.4 Function
	2.2.1.5 Process
	2.2.1.6 Partition
	2.2.1.7 Schedule

	2.2.2 Mapping of elements

	2.3 Structural view – software components
	2.3.1 Hardware Access Services
	2.3.1.1 IODriverManager
	2.3.1.2 NICDriverManager
	2.3.1.3 WDDriverManager
	2.3.1.4 ECUDriverManager

	2.3.2 Operating System Services
	2.3.2.1 FileManager
	2.3.2.2 MemoryManager
	2.3.2.3 ConcurrencyManager
	2.3.2.4 TimeManager
	2.3.2.5 SocketManager
	2.3.2.6 LibraryManager
	2.3.2.7 ExecutionManager

	2.3.3 Functional Distribution Services
	2.3.3.1 VariableManager
	2.3.3.2 MessageManager
	2.3.3.3 ConfigurationManager
	2.3.3.4 NetworkManager
	2.3.3.5 MonitoringManager
	2.3.3.6 IOManager
	2.3.3.7 SynchronizationManager
	2.3.3.8 FunctionManager
	2.3.3.9 FrameworkManager
	2.3.3.10 HealthManager
	2.3.3.11 LogManager
	2.3.3.12 TopologyManager
	2.3.3.13 Redundancy Manager
	2.3.3.14 DeploymentManager
	2.3.3.15 CryptoManager
	2.3.3.16 UserAccountManager
	2.3.3.17 SecurityMonitoringManager

	2.3.4 FDF Detailed structural view

	2.4 Behavioural view
	2.4.1 Configuration phase
	2.4.2 Initialization phase
	2.4.2.1 Driver initialisation
	2.4.2.2 Data initialisation
	2.4.2.3 Function initialisation

	2.4.3 Execution phase
	2.4.3.1 Data monitoring
	2.4.3.2 Data distribution
	2.4.3.3 Global synchronisation
	2.4.3.4 Watchdog refreshing
	2.4.3.5 Input reading
	2.4.3.6 Output writing
	2.4.3.7 Redundancy management
	2.4.3.8 Data logging
	2.4.3.9 Data user function execution
	2.4.3.10 Data topology discovery
	2.4.3.11 Deadline checking
	2.4.3.12 Disable execution
	2.4.3.13 Load checking
	2.4.3.14 Output checking
	2.4.3.15 Temperature checking
	2.4.3.16 Reset platform
	2.4.3.17 Executable and configuration deployment

	Chapter 3 Safety concept
	3.1 FDF Functional model
	3.2 FDF PHA Methodology
	3.3 FDF PHA Results
	3.3.1 System Hazards
	3.3.2 Countermeasures
	3.3.3 Application conditions
	3.3.4 Recommendations
	3.3.5 CONNECTA functional requirements mapping

	Chapter 4 Security concept
	4.1 Introduction
	4.2 Motivation
	4.3 Scope
	4.4 Objective
	4.5 Risk analysis – Security objectives
	4.5.1 FDF brief description
	4.5.2 Security dimensions or attributes
	4.5.3 System assets
	4.5.4 Use case: Bogie Monitoring System
	4.5.4.1 General Description
	4.5.4.2 Operational Description
	4.5.4.3 Assets Used
	4.5.4.4 Possible Threats/Attacks

	4.5.5 Security objectives

	4.6 Security requirements
	4.7 Risk assessment
	4.7.1 Security Level Target
	4.7.2 Determination of the severity of the risk

	4.8 Security countermeasures
	4.8.1 Countermeasure 1: Trusted Platform Module (TPM)
	4.8.2 Countermeasure 2: Password policy
	4.8.3 Countermeasure 3: User profiles and application profiles policies
	4.8.4 Countermeasure 4: Role-based access control (RBAC)
	4.8.5 Countermeasure 5: Encryption
	4.8.6 Countermeasure 6: Session bindings
	4.8.7 Countermeasure 7: Network limited bandwidth
	4.8.8 Countermeasure 8: Asset inventory
	4.8.9 Countermeasure 9: Software-based memory protection unit

	4.9 Functional Security Assessment Requirements
	4.10 Conclusions and next steps

	Chapter 5 Assessment of the safety and security concepts
	5.1 Requirements given to the FDF design
	5.1.1 General
	5.1.2 Safety
	5.1.3 Security

	5.2 Assessment of the safety concept
	5.2.1 Requirements
	5.2.2 Approach and findings
	5.2.3 Appraisal

	5.3 Assessment of the security concept
	5.3.1 Requirements
	5.3.2 Approach and findings
	5.3.3 Appraisal

	Chapter 6 Integration of the Framework in the IMP
	Chapter 7 Summary and conclusion
	Chapter 8 List of Abbreviations
	Chapter 9 Bibliography
	ANNEX A: FDF Process Hazard Analysis
	ANNEX B: Functional Security Assessment Requirements table

