

D2.2

Report on analysis of ‘functional distribution
architecture’ frameworks and solutions

Project number: 730830

Project acronym: Safe4RAIL

Project title:
Safe4RAIL: SAFE architecture for Robust

distributed Application Integration in roLling stock

Start date of the project: 1st of October, 2016

Duration: 24 months

Programme: H2020-S2RJU-OC-2016-01-2

Deliverable type: Report

Deliverable reference number: ICT-730830 / D2.2 / 1.1

Work package WP 2

Due date: April 2017 – M07

Actual submission date: 29th of April, 2017

Responsible organisation: SIE

Editor: Hongjie Fang

Dissemination level: Public

Revision: 1.1

Abstract:

Analyses functional distribution architecture
frameworks and solutions, identifies the gaps
between COTS frameworks/solutions and the
next generation TCMS.

Keywords:
Functional distribution architecture, AUTOSAR,

ARINC 653, TCMS, RTOS, Hypervisor

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
730830.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page II

Editor

Hongjie Fang (SIE)

Contributors (ordered according to beneficiary numbers)

Derya Mete Saatci, Arjan Geven (TTT)

Iñigo Odriozola, Ekain Azketa (IKL)

Hongjie Fang (SIE)

Petr Novobilsky (UNI)

Bernd Löhr, Iris Bosse (NEW)

Youlian Kirov (IAV)

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The content of this document reflects
only the author’s view – the Joint Undertaking is not responsible for any use that may be
made of the information it contains. The users use the information at their sole risk and
liability.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page III

Executive Summary

The main task of WP2 of Safe4RAIL is to provide the “Functional Distribution” architecture
concept for a mixed criticality embedded platform, offering an execution environment for
multiple Train Control and Monitoring System (TCMS) application functions with a virtual bus
inside the end-system.

This document aims at providing a detailed comparative analysis of cross-industry ‘functional
distribution architecture’ frameworks and solutions, based on the State Of The Art (SOTA)
analysis of “Functional distribution” architecture frameworks and embedded platform
solutions as well as high level requirements of the next generation TCMS in D2.1. This
analysis takes into consideration domain specific standardized framework (AUTOSAR,
ARINC 653, TCN application profiles) and Commercial Off The Shelf (COTS) solutions
(RTOS, hypervisor) which are likely to be used for the development of the to be designed
framework.

This deliverable will be organized in this way: Chapter 2 analyses the existing COTS
solutions (RTOS and hypervisor) that are likely to be used for the framework ; Chapter 3
analyses the SOTA of Automotive Open System Architecture (AUTOSAR) standard of
automotive domain and identifies the gap between AUTOSAR and the high level
requirements of next generation TCMS, as well as Chapter 4 concentrates on the avionic
domain by analysing SOTA of ARINC 653 standard, Chapter 5 focuses on the TCN
standard; In the 0, a comparative summary of the domain specific aspects will be done.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page IV

Contents

List of Figures .. VIII

List of Tables ... IX

Chapter 1 Introduction ... 1

1.1 Description of Safe4RAIL ... 1

1.2 Mixed criticality application framework ... 2

Chapter 2 Analysis of RTOS and Hypervisor ... 4

2.1 PikeOS ... 4

2.1.1 CPU scheduling strategy .. 4

2.1.2 Memory management .. 4

2.1.2.1 Memory allocation .. 4

2.1.2.2 Memory access control... 5

2.1.3 Safety support .. 5

2.1.4 Fault tolerant .. 5

2.1.5 Compatible characteristic ... 6

2.2 XtratuM .. 6

2.2.1 CPU scheduling strategy .. 6

2.2.2 Memory management .. 6

2.2.2.1 Memory allocation .. 6

2.2.2.2 Memory access control... 7

2.2.3 Safety support .. 7

2.2.4 Fault tolerant .. 7

2.2.5 Compatible characteristic ... 8

2.3 VxWorks .. 8

2.3.1 CPU scheduling strategy .. 8

2.3.2 Memory management .. 8

2.3.2.1 Memory allocation .. 8

2.3.2.2 Memory access control... 9

2.3.3 Safety support .. 9

2.3.4 Fault tolerant .. 9

2.3.5 Compatible characteristic ... 9

2.4 LynxOS .. 10

2.4.1 CPU scheduling strategy ...10

2.4.2 Memory management ...10

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page V

2.4.2.1 Memory allocation ...10

2.4.2.2 Memory access control..10

2.4.3 Safety support ...10

2.4.4 Fault tolerant ...11

2.4.5 Compatible characteristic ..11

2.5 Integrity .. 11

2.5.1 CPU scheduling strategy ...11

2.5.2 Memory management ...11

2.5.2.1 Memory allocation ...11

2.5.2.2 Memory access control..11

2.5.3 Safety support ...12

2.5.4 Fault tolerant ...12

2.5.5 Compatible characteristic ..12

2.6 Comparative conclusion ... 12

Chapter 3 Comparative analysis of AUTOSAR .. 13

3.1 Technical characteristics .. 13

3.1.1 Configuration and management services ..13

3.1.1.1 Management services ...13

3.1.1.2 Partition management ...13

3.1.1.3 Process management ...14

3.1.1.4 Time management ..14

3.1.1.5 Memory management ...14

3.1.1.6 Communication management ..14

3.1.2 Time services ..15

3.1.3 Input/Output Services ..15

3.1.4 Real-time support ..15

3.1.5 Fault isolation ..15

3.1.6 Health monitoring ..16

3.1.7 Security services ...16

3.1.8 Requirements for underlying platform ...16

3.2 Non-technical characteristics ... 17

3.2.1 System Architecture Engineering Method ...17

3.2.2 Safety and the relevant standards ...17

3.2.3 Security and the relevant standards ..17

Chapter 4 Comparative analysis of ARINC 653 .. 19

4.1 Technical characteristics .. 19

4.1.1 Configuration and management services ..19

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page VI

4.1.1.1 Configuration services ...19

4.1.1.2 Management services ...19

4.1.1.2.1 Partition management .. 20

4.1.1.2.2 Process management .. 20

4.1.1.2.3 Memory management .. 20

4.1.2 Time services ..20

4.1.3 Input/Output Services ..20

4.1.4 Real-time support ..21

4.1.5 Fault isolation ..21

4.1.6 Health monitoring ..22

4.1.7 Security services ...22

4.1.8 Requirements for underlying platform ...23

4.2 Non-technical characteristics ... 23

4.2.1 System Architecture Engineering Method ...23

4.2.2 Safety and the relevant standards ...24

4.2.3 Security and the relevant standards ..24

Chapter 5 Comparative analysis of existing TCMSs 26

5.1 Technical characteristics .. 26

5.1.1 Configuration and management services ..26

5.1.1.1 Configuration services ...26

5.1.1.2 Management services ...27

5.1.2 Time services ..27

5.1.3 Input/Output Services ..27

5.1.4 Real-time support ..27

5.1.5 Fault isolation ..28

5.1.6 Health monitoring ..28

5.1.7 Security services ...28

5.1.8 Requirements for underlying platform ...29

5.1.9 Safety Services ...29

5.2 Non-technical characteristics ... 29

5.2.1 System Architecture Engineering Method ...29

5.2.2 Safety and the relevant standards ...30

5.2.3 Security and the relevant standards ..30

Chapter 6 Summary and conclusion ... 31

Chapter 7 List of Abbreviations .. 33

Chapter 8 Bibliography .. 36

Annex 1 – ARINC 653 Analysis to EN50128 ... 38

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page VII

Annex 2 – AUTOSAR Analysis to EN50128 .. 45

Annex 3 – AUTOSAR Analysis to IEC62443 ... 53

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page VIII

List of Figures

Figure 1 - Generic embedded platform virtualized to provide software abstraction for hard
RT, real-time, soft-time, safety-critical functions, using the reconfigurable application
framework and drive-by-data architecture .. 1

Figure 2 - Generic embedded platform with ETB (Ethernet Train Backbone) and Ethernet
Consist Network (ECN) network devices, embedded computers and software platform
components for next generation TCMS. ... 2

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page IX

List of Tables

Table 1: Device Configuration ..27

Table 2: TCMS Needed Resources ..29

Table 3: List of Abbreviations ...35

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 1 of 54

Chapter 1 Introduction

1.1 Description of Safe4RAIL

The development of new technology and architectural concepts in automotive and avionic
industries have led to significant and fast progress in safety, security and in the integration of
new functions. To achieve similar industry developments in railway systems and take
advantage of cross-industry synergies, the Shift2Rail JU multi-annual action plan has given
high priority to create a specification that addresses the most common issues hindering the
rolling stock efficiency, system optimization and interoperability within the European railway
industry.

Under the above discussed background, the project “Safe4RAIL - Safe architecture for
Robust distributed Application Integration in roLling stock” will provide a holistic architectural
approach for building the next generation of Train Control and Monitoring Systems (TCMS).
The main objective of Safe4RAIL is to define a fundamentally simplified electronic
architecture and a common distributed/shared embedded computing and communication
infrastructure for modular integration of all safety-, time- and mission-critical, and non-critical
train functions.

Figure 1 - Generic embedded platform virtualized to provide software abstraction for hard RT, real-
time, soft-time, safety-critical functions, using the reconfigurable application framework and drive-
by-data architecture

Safe4RAIL investigates the baseline technologies and the capabilities required to create all
the necessary preconditions for the development of a distributed integrated mixed-criticality
embedded platform and architecture for rolling stock, which can host functions with the
highest Safety Integrity Level (SIL) and integrate other less critical applications.

The baseline technologies include all embedded platform modules and components such as
networks, middleware, real-time operating systems, with appropriate models of computation
and communication, which support flexible application hosting and inter-process
communication. The capabilities are all means and methodologies to define, configure and
assess performance of embedded platform components, to align, verify, model and simulate
their performance, and to structure scalable, reconfigurable, generic integrated modular
architectures.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 2 of 54

The generic embedded platform architecture provided by Safe4RAIL will allow safe and
secure mixed-criticality integration and high levels of software abstraction for multiple
partitions and multiple distributed applications on many shared and reconfigurable computing
modules, with full system-level separation of logical and temporal behaviour to reduce logical
system complexity.

Figure 2 - Generic embedded platform with ETB (Ethernet Train Backbone) and Ethernet Consist
Network (ECN) network devices, embedded computers and software platform components for next
generation TCMS.

1.2 Mixed criticality application framework

One of the most important objectives of Safe4RAIL project is to develop an application
framework concept for modular integration of TCMS applications, in order to host distributed
safety-critical and non-critical application side-by-side on the same hardware platform in
distributed next generation TCMS systems.

The goal of this mixed criticality application framework concept is to provide solutions to fulfil
functional safety-critical and non-critical requirements and non-functional requirements
(including security) that support functional distribution, interoperability, reconfiguration,
deterministic inter-partition communication, hardware and communication abstraction and
virtual coupling of services, as if they would be hosted on a fault-tolerant distributed
embedded computer.

For the next generation TCMS, the train inauguration is the railway specific requirement
compared to either the avionic or the automotive domains. The mixed-criticality application
framework will be capable to leverage the existing mechanisms (e.g., TTDP, TTDB, etc.) to
deal with train inauguration at the framework level.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 3 of 54

Development of such an application framework will help to reduce hardware and power
consumption as well as save the whole system weight. Limitations in integration of hard RT
applications and design of gateway-free “flat” architectures as well as in integration of open
and closed systems need to be conquered.

System-level partitioning and virtualization with temporal and spatial isolation in mixed
criticality systems will be adopted in the design process. Temporal and spatial partitioning will
help to simplify system integration and guarantee complete isolation of distributed functions
in an integrated system. Only critical computing/networking resources attached to functional
distribution, their configured use and interactions are to be certified.

After design of the application framework, the defined concepts and methodologies during
the development process need to be proved and the integrated system should be evaluated
to reach up to SIL 4 level.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 4 of 54

Chapter 2 Analysis of RTOS and

Hypervisor

In this chapter, the selected COTS Hypervisors and RTOSs will be analysed with respect to
the high level requirements in D2.1 [1], in order to select the potential feasible solution for
designing the next generation TCMS framework.

2.1 PikeOS

2.1.1 CPU scheduling strategy

PikeOS is a platform providing RTOS, type 1 hypervisor (enables hardware virtualisation)
and para-virtualization functionalities.

- Threads are scheduled based on their priority.
- The available Central Processing Unit (CPU) time can be partitioned into time windows

called time partitions. Time partitions can be grouped to a major time frame, which is
executed cyclically.

- The scheduling scheme defined by the major time frame can be changed on run-time
- In order to allow idle time usage or low latency for exception handling, threads can

always be assigned to a special time-partition 0 (for details see [2]).
- The scheduler can be configured to execute certain threads on dedicated processor

cores.
- Guest operating systems such as Linux use their own scheduler within the assigned time

window.

2.1.2 Memory management

In PikeOS, the physical memory can be separated in multiple physical memory regions that
are in turns used to serve per-partition allocations (including kernel resources e.g.,
thread/task descriptors). This effectively allows per-partition allocations to be not only
virtually separated, but also physically separated. Physical memory partitioning may be
useful to e.g., ensure that partitions will be always served by one memory controller, or that
specific physically tagged cache entries are not evicted, or simply to ensure a higher
predictability in the per-partition memory access.

2.1.2.1 Memory allocation

In order to comply with safety standards, in PikeOS, the memory for each partition is
assigned statically. The different memory types defined by PikeOS are:

- VM_MEM_TYPE_RAM memory requirement describes a memory resource consisting of
system RAM pages that shall be allocated and assigned to the partition.

- VM_MEM_TYPE_ROM specifies an area within a Read Only Memory (ROM) segment,
which shall be accessible by the partition.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 5 of 54

- VM_MEM_TYPE_IO_MEM specifies an area of memory mapped Input/Output (I/O)
address space that shall be accessible by the partition

- VM_MEM_TYPE_KMEM tells the PSSW (PikeOS System Software) how much memory
(given in bytes) shall be allocated for the partition’s kernel resources.

The PikeOS extension for a native application implements a malloc and free, to be used
within the C library CLIB. A contiguous memory pool has to be statically assigned upfront.
After mapping a part of this pool into the user-space malloc can use this memory.

2.1.2.2 Memory access control

PikeOS requires definitely a hardware Memory Management Unit (MMU) to perform its
separation capabilities. Each partition has its own virtual memory space and within a partition
every task has its own virtual memory space. The memory assignment is done statically
within the integration project and cannot be altered later on.

2.1.3 Safety support

PikeOS is a foundation for safety requirement of smart devices. It provides a hypervisor on
top of a micro kernel allowing the separation of diverse applications into different partitions
[3]. According to [3], PikeOS has received the first SIL 4 certification according to EN
50128[4] on a multi-core platform.

Only the micro-kernel of PikeOS runs in privileged mode. All of its code contributes to the
trusted code base of every application within the system that might run on top of it. This
mechanism can reduce the cost of code certification and even allow the combination of
applications of different levels of criticality since every application can be certified (e.g. based
on EN 50128 [4]) independently from others [3]. Mix-criticality within a framework can be
supported, when such framework is based on PikeOS.

In order to reduce software complexity, PikeOS is equipped with ARINC 653[5] compliant
resource partitioning. In this way, programs running in separate partitions cannot interfere
with each other and they do not need to trust each other [3]. Individual criticality levels can
also be assigned to each program independently.

2.1.4 Fault tolerant

A PikeOS based system offers three architectural mechanisms to implement as support a
fault tolerant design.

- The PikeOS health monitoring system (HM) is designed to handle errors at system
runtime and to execute recovery actions as configured by the integrator. Depending on
the result of the error-evaluation performed by the HM decision logic, an error could be
handled at user level, at partition level, or at module level, thus originating a module
global action, which normally result in a system reboot or shutdown.

- Build in tests (BIT) are an integral part of the fault tolerance of a safety system. BITs are
always specific to the hardware architecture and for the system architecture. BIT
implementation can be implemented into Board Support Package (BSP)

- Software diversity can help to address soft errors. Soft errors could be addressed as well
as systematic errors in the software design.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 6 of 54

2.1.5 Compatible characteristic

PikeOS is a real-time operating system and virtualization platform providing full separation in
both time and space for multiple software applications running on different criticality levels
[6]. Based on the implemented mechanism, PikeOS is ARINC 653 [5] and AUTOSAR [7]
compliant. PikeOS supports also multi-core platforms.

PikeOS uses a scheduler combining time-driven and priority-driven scheduling, which aims
at improving the CPU usage comparing to a conventional RTOS. At the development
process, the developed Eclipse based Integrated Development Environment (IDE) CODEO
[8] supports system architects with graphical configuration tool. CODEO also provides all the
components software engineers need to develop embedded applications and includes
comprehensive help files to finish embedded projects in a time-saving and cost-efficient way.

PikeOS provides a built-in Health Monitoring Function which implements all features
described in the ARINC 653 standard [8]. At the same time, for each of the supported CPU
families, a corresponding CPU emulator is available, which makes the application
development possible, even before the real hardware is available.

2.2 XtratuM

2.2.1 CPU scheduling strategy

XtratuM is an open-source, bare-metal hypervisor [9] targeting real-time systems and
implementing the para-virtualization principle:

- Strong temporal isolation: fixed cyclic scheduler.
- Strong spatial isolation: all partitions are executed in processor user mode, and do not

share memory.
- Basic resource virtualization: clock and timers, interrupts, memory, CPU and special

devices.
- Real-time scheduling policy for partition scheduling.
- Efficient context switch for partitions.
- Deterministic hypercalls (hypervisor system calls).
- Robust and efficient inter-partition communication mechanisms (sampling and queuing

ports).
- Low overhead.
- Static system definition via configuration file (XML)[9].

2.2.2 Memory management

The XtratuM data structures are static and predefined at build time from the configuration file.

The configuration file that contains all the information allocated to each partition as well as
specific XtratuM parameters is called XM CF.xml. It contains the information as: memory
requirements, processor sharing, peripherals, health monitoring actions, etc.

2.2.2.1 Memory allocation

Each partition is in charge of managing the page table. XtratuM is mapped in the top of every
memory map. The initial memory map of each partition is built by XtratuM following the

https://www.sysgo.com/services/document-center/arinc/#tab_c597

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 7 of 54

description found in the eXtensible Markup Language (XML) configuration file, it cannot be
updated by the partition. If a partition requires a new memory map, then it has to define the
new memory map by registering a set of pages from its own memory. Once registered, these
pages become read-only, so subsequent updates must be validated by XtratuM.

Since XM CF.xml defines the resources allocated to each partition, this file represents a
contract between the integrator and the partition developers. The integrator or any of the
partition developers should not change the contents of the configuration file on their own.

2.2.2.2 Memory access control

Memory space of each application is protected from the rest of the applications present in the
system. Partitioned software architecture have evolved to provide such security. The
separation kernel establish a combination of hardware and software to allow multiple
functions to be performed on a common set of physical resources without interface.

Without MMU, all the physical memory is fully accessible. By using this MMU, XtratuM is able
to:
- Implement full spatial isolation. No partition is longer able to read from memory areas

belonging to other partitions.

- Support inter-partition shared memory: two or more partitions are able to share memory
areas (specified in the XML configuration), permitting to design and implement more
efficient inter-partition communication mechanisms. And, in addition, code sections could
be shared by partitions avoiding duplicity of code.

XtratuM implements

- A new module called virtual memory manager which is in charge of managing the
virtual maps, and is able to create/release them and map/unmap physical pages.

- Three new hypercalls: XM_set_page_type() which permits a partition to register new

memory maps, XM_update_page32() which allows a partition to update an entry in an

already existing memory map, and XM_write_register32(PTD1_REG32,) which

enables a partition to change the current memory map with a new one.

2.2.3 Safety support

XtratuM is a hypervisor based on para-virtualization that provides one or more virtual
execution environments for partitions. Most importantly, XtratuM was designed to meet
safety critical real-time requirements, because it provides strong temporal isolation through
fixed cyclic scheduler, as well as strong spatial isolation, which means all partitions don’t
share memory between each other at all. More specifically, XtratuM uses its own loader to
create a specific memory map for each guest OS to enable memory protection between
OSes.

2.2.4 Fault tolerant

The XtratuM health monitor is mechanism proposed by the ARINC specification 653-x to
recover or kill partition after a fail has happened [10].

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 8 of 54

The health monitor is the part of XtratuM that detects and reacts to anomalous events or
states. The purpose of the HM is to discover the errors at an early stage and try to solve or
confine the faulting subsystem in order to avoid or reduce the possible consequences. As
result of enforcing the isolation of the partitions, XtratuM contains a lot of consistency and
security checks; therefore, it can detect a large number of errors. Errors are grouped by
categories. Once an error is detected, XtratuM reacts to the error providing a simple set of
predefined actions to be done when it is detected. XtratuM HM subsystem is composed by
four logical components:
HM event detection: to detect abnormal states, using logical probes in the XtratuM code.
HM actions: a set of predefined actions to recover the fault or connect the error.
HM configuration: to bind the occurrence of each HM event with the appropriate HM action.
HM notification: to report the occurrence of the HM events.
Once an HM event is raised, XtratuM performs an action that is specified in the configuration
file. Next table shows the list of HM events and the predefined default action at hypervisor
and partition level.

2.2.5 Compatible characteristic

XtratuM has been specifically designed for critical real-time systems following the
requirements for secure space applications based on the ARINC-653 standard [5]. XtratuM
provides ARINC 653 scheduling policy, partition management, inter-partition
communications, health monitoring, logbooks, traces, and other services. These can easily
be adapted to the ARINC 653 standard. However, it does not provide a compliant Application
Program Interface (API) with ARINC 653 standard.

At the moment, XtratuM is not self-hosting, which means, it is necessary to use a cross
development system to develop program based on XtratuM. One of the most important
characteristics of XtratuM is that it supports for multiprocessor environment.

2.3 VxWorks

2.3.1 CPU scheduling strategy

The VxWorks micro-kernel supports the priority pre-emptive scheduling policy with up to 256
different priority levels and a large number of tasks, and it also supports the round robin
scheduling policy [11].

VxWorks offers two different modes for application tasks to execute; either kernel mode or
user mode.

- In kernel mode, application-tasks can access the hardware resources directly.

- In user mode, on the other hand, tasks cannot directly access hardware resources, which
provides greater protection (e.g., in user mode, tasks cannot crash the kernel).

Kernel mode is provided in all versions of VxWorks while user mode was provided as a part
of the Real Time Process (RTP) model, and it has been introduced with VxWorks version 6.0
and beyond.

2.3.2 Memory management

2.3.2.1 Memory allocation

VxWorks memory management system does not use swapping or paging. This is because
the system allocates memory within the physical address space without the need of

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 9 of 54

swapping data in and out of this space due to memory constraints. VxWorks assumes that
there is enough physical memory available to operate its’ kernel and the applications that will
run on the operating system. Therefore VxWorks does not have a directly supported virtual
memory system.

The amount of memory available to a VxWorks system is dependent upon the platform’s
hardware and the memory management unit’s imposed constraints. This amount is usually
determined dynamically by the platform depending on how much memory is available, but in
some architectures it is a hard coded value. This value is returned by the sysMemTop()
method which will set the amount of memory available to the operating system for this
session.

2.3.2.2 Memory access control

Memory management unit (MMU)–based memory protection increases reliability. VxWorks
incorporates a process-based model that provides user-mode application execution in
addition to its traditional kernel-mode execution [11].

2.3.3 Safety support

VxWorks is conformant to the requirements of safety standards such as DO-
178C/EUROCAE ED-12C Level A, ARINC 653 [5] and IEC 61508[12] and it was achieved by
partitioning including temporal and spatial partitioning.

For the time partitioning aspect, VxWorks [13] is totally compliant with the ARINC 653
standard. VxWorks also provides an option for priority pre-emptive scheduling of partitions.
This method permits slack stealing by allowing designated partitions to consume what would
otherwise be idle time in the defined ARINC schedule, in order to raise the processor use
rate. In this way, safety critical applications still can finish their job in bounded time.

Spatial partitioning is achieved by using memory protected containers for the partitions that
are based on virtual memory contexts [13]. The processor’s MMU is always used to map
virtual memory to physical address space, in order to restrict access to the partitioned
memory space.

2.3.4 Fault tolerant

The module OS of the VxWorks interacts directly with the computing platform (core module),
providing global resource management, scheduling, and health monitoring for each of the
partitions. It also uses a BSP, the hardware-specific configuration required to run on different
processors and hardware configurations.

2.3.5 Compatible characteristic

VxWorks is ARINC 653 compliant and is not a self-hosting OS, so that we need to use a
development system across it to develop the applications hosted by it. For the underlying
platform, VxWorks supports for multiprocessor.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 10 of 54

2.4 LynxOS

2.4.1 CPU scheduling strategy

LynxOS-178 [14] uses fixed cyclic scheduling. Each partition is statically assigned CPU time
via a periodically recurring time slice. Thereby, interference between partitions is prevented
in the temporal domain.

Within a partition, on the other hand, LynxOS-178 offers a process-based execution
environment with priority-based pre-emptive scheduling, priority inheritance, and priority
ceilings according to the POSIX model.

2.4.2 Memory management

2.4.2.1 Memory allocation

In analogy to the allocation of the CPU time, Lynx-OS-178 statically performs the allocation
of memory to the partitions. The memory allocation of a partition is fixed at design time and
the configured memory size cannot be changed at runtime.

2.4.2.2 Memory access control

An MMU is employed for isolating the partitions from each other. In contrast to the memory
allocation at the partition level, dynamic memory management is supported within a partition.
Therefore, LynxOS-178 offers an API with POSIX-compliant calls. The software layer for
establishing this POSIX interface is not part of the LynxOS-178 partitioning kernel, but
executed in the partitions.

MMU support has been designed to reside at the lowest level of the kernel of LynxOS. Thus
only LynxOS provides real-time capabilities plus the:

- Reliability advantages of protected memory

- Performance advantages of virtual addresses

Where other RTOSs rely on unprotected tasks running in a single flat address space, MMU-
based LynxOS enables each task to run protected in its own space.

2.4.3 Safety support

LynxOS can guarantee safety because of the implemented partitioning mechanisms.

The scheduler of LynxOS is pre-emptive and priority based. Which means the current
process is pre-empted as soon as a higher priority thread is ready to run. Round-robin,
Quantum and FIFO will be used to deal with the situation that the processes have the same
priority. Quantum is very similar to round-robin. The only difference is that the length of the
time-slice is not fixed, but it is a variable for each priority level. This scheduling mechanism
as created to ensure the processing of safety critical processes, in order to guarantee the
required safety levels.

MMU must be used for the LynxOS, in order to provide memory protection based on
translating the virtual memory into the physical address. LynxOS uses also multiple address
spaces, although it could slow down the processing procedure because of a lot of context
switching, it can enhance safety of the process. Crash of a single task could be handled by
LynxOS.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 11 of 54

2.4.4 Fault tolerant

ARINC 653 Health Monitoring: The Health Monitor (HM) is invoked by an application calling
the RAISE_APPLICATION_ERROR service or by the OS or hardware detecting a fault.

2.4.5 Compatible characteristic

LynxOS-178 is an ARINC 653 compliant RTOS and it is also UNIX-compatible, POSIX-
conforming, multiprocess, and multithreaded operating system designed for complex real-
time applications that require fast, deterministic response.

LynxOS is self-hosting, that means the user program can be developed by using the OS as a
platform, in order to exclude cross-developing and avoid compatibility problems. At the same
time, LynxOS also supports for multiprocessor.

2.5 Integrity

2.5.1 CPU scheduling strategy

The INTEGRITY RTOS [15] can statically bind guest operating systems to cores, in an
Asymmetric Multiprocessing (AMP) model, or dynamically schedule workloads in a
Symmetric Multiprocessing (SMP) model, depending on system requirements.

2.5.2 Memory management

2.5.2.1 Memory allocation

INTEGRITY’s guaranteed memory resources

• from exhaustion
• from damage
• from unauthorized access

Unique memory quota system keeps one address space from exhausting the memory of any
other.

To prevent kernel memory exhaustion, INTEGRITY requires that kernel memory not be used
for messages, semaphores, or other kernel objects created in response to process requests.
Instead, the kernel performs all services requested by a process using the memory
resources that the requesting process supplies.

To prevent the risk of user stack overflow, INTEGRITY’s kernel has its own memory stack.
Without this, the kernel would need to access the user process’ stack. But this can lead to
problems because it is impossible for the user process to anticipate the maximum stack size
if it is subject to use by unknown code (i.e., the kernel).

2.5.2.2 Memory access control

As one of the first RTOSes to leverage hardware memory-management units (MMUs).

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 12 of 54

2.5.3 Safety support

INTEGRITY RTOS technology has received a number of certifications and some of them are
safety related. For example, FAA: DO-178B, Level A and IEC: 61508 SIL 3[16]. INTEGRITY
RTOS guarantees safety through guaranteed hard real-time performance and memory
resources.

INTEGRITY is a hard real-time operating system that does not sacrifice real-time
performance for security or protection. It can respond to events in nanoseconds with
guarantee [16]. The INTEGRITY RTOS always services the highest priority interrupt with
absolute minimum latency. To guarantee this, the kernel never masks nor blocks interrupts.
The kernel also avoids instructions with long latencies that could temporarily block interrupts
on some systems.

2.5.4 Fault tolerant

Health monitoring: provides features for performance monitoring, fault detection, and guest
operating system and application restart.

The Health Monitor according to ARINC 653.

2.5.5 Compatible characteristic

The INTEGRITY RTOS is POSIX and ARINC 653 compliant. Green Hills provides also
professional integrated development environment for developing programs on INTEGRITY
RTOS as well as simulator for INTEGRITY RTOS. The modern architecture of INTEGRITY is
well suited for multicore processors targeting embedded systems [16].

2.6 Comparative conclusion

As for Hypervisor, all the analysed hypervisors implement temporal and special partitioning
to support hard real time. PikeOS implements the special time-partition 0, which is designed
to reduce latency of safety related threads. Time-partition 0 also makes usage of the idle
time slot of all the time windows to run the non-safety critical threads. PikeOS has received
the first SIL 4 certification according to EN 50128 on a multi-core platform. Based on the
arguments discussed above, it could be selected for future design and implementation of the
next generation TCMS framework.

For the design and implementation based on RTOS, INTEGRITY could be a potential
candidate. INTEGRITY supports AMP and SMP CPU scheduling strategies, while other
analysed RTOSs can only statically allocate CPU resources to partitions, and it also received
a number of safety related certifications like FAA: DO-178B, Level A or IEC: 61508 SIL 3.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 13 of 54

Chapter 3 Comparative analysis of

AUTOSAR

3.1 Technical characteristics

AUTOSAR (Automotive Open System Architecture) provides a common software
infrastructure for automotive systems of all vehicle domains. The objective behind the
development is to create a base for industry wide collaboration on basic functions while
providing a platform which continues to encourage competition on innovative vehicle
functions.

Technical goals like modularity, scalability, transferability and re-usability of functions are
achieved in AUTOSAR by the introduction of three software layers on the highest abstraction
(application layer, runtime environment and basic software layer) and standardisation of the
interfaces between the software layers.

3.1.1 Configuration and management services

3.1.1.1 Management services

The system configuration is done in AUTOSAR by the means of an AUTOSAR system
description file. In the system description file the system is represented by Address
Resolution Protocol Packages (ARPackages), which contain autonomous entities in an own
namespace. The ARPackages can be arbitrary nested and enable the system designer to
create arbitrary structures of his system and its elements. Different system variants can be
handled in the system configuration by the use of so called variation points. The variation
points define under which condition and when a variation should be resolved.

The latest possible variation point for system reconfiguration according to AUTOSAR is
between the creation of an executable program and the start-up of the Electronic Control Unit
(ECU).

This concept makes it difficult to cover the requirement to handle online system
reconfiguration at train inauguration coming from the railway domain.

One possible solution for this requirement can be the Service Discovery module from
AUTOSAR which provides the functionality to dynamically offer and detect services within
the network.

3.1.1.2 Partition management

Partitions are created and managed in AUTOSAR within the low-level ECU configuration.
Software components alone or groups of software components can be assigned/mapped to
different partitions after the partition creation in the configuration process. Interferences
between software components running on different partitions are inhibited by a memory
protection mechanism. (For further details see [17])

AUTOSAR fulfils the high level requirements on partition management defined in D2.1 [1].

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 14 of 54

3.1.1.3 Process management

The definition of tasks and the assignment of partitions to tasks is done in AUTOSAR within
the low-level ECU configuration. The tasks can be configured among others in terms of:

 Priority

 Preemtability

 Resources addressed by the task

 Timing protection

 Accessibility from applications

 Events the task may react on

 Activation at system start-up or for specific application modes

 Maximum number of queued activation requests

(For further details see [17] and [18])

AUTOSAR fulfils the high level requirements on process management defined in D2.1 [1].

3.1.1.4 Time management

The absolute value of the synchronized global time is provided in AUTOSAR by the Basic
Software (BSW) module “Synchronized Time-Base Manager” (StbM). The StbM interacts
with the BSW communication modules to handle time synchronization by the means of
necessary communication protocols. Time synchronization over CAN, Ethernet and FlexRay
is currently possible with AUTOSAR.

AUTOSAR fulfils the high level requirements on time management defined in D2.1 [1].

3.1.1.5 Memory management

Code and data mapping to specific memory sections is done in AUTOSAR within the low-
level ECU configuration. (For further details see [17])

Some of the most important memory mapping mechanisms of AUTOSAR are:

 Mapping of variables to specific memory sections depending on their size,

 Mapping of variables, which must not be initialized after a power-on reset, to a RAM
section that is not initialized after a reset,

 Mapping of variables, that are accessed via bit masks, to a RAM section that allows
for bit manipulation instructions of the compiler,

 Mapping of modules with functions to the external or internal flash memory,
depending on the frequency of their usage,

 Mapping of code and data to different memory sections,

 Mapping of internal module variables into protected memory,

 Mapping of buffers for data exchange into unprotected memory,

 Mapping of module variables into different memory (partition-) areas – separation of
partition assigned memory

(For further details see [19])

AUTOSAR fulfils the high level requirements on memory management defined in D2.1 [1].

3.1.1.6 Communication management

The runtime environment introduced by AUTOSAR as one of the three high level software
layers implements the so called Virtual Functional Bus (VFB). The VFB enables a decoupling

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 15 of 54

of the application software layer from the ECU hardware (hardware implementation or used
communication bus) and must be individually generated for each ECU configuration and
network topology. The VFB provides, among others, infrastructure services for
communication between application software components independent on their location in
the network. Two types of communication are available: Sender-Receiver (signal passing)
and Client-Server (function invocation). (For further details see [20])

AUTOSAR fulfils the high level requirements on communication management defined in D2.1
[1].

3.1.2 Time services

Besides the BSW module for provision and synchronization of a global time (see 3.1.1.4)
AUTOSAR implements a time service module in the BSW. This module provides services
within the ECU based on the general purpose timer. This services might be used, among
others, to measure CPU and task load as well as to implement timeout supervision of
modules.

3.1.3 Input/Output Services

Inputs and outputs can be addressed by application software components in AUTOSAR only
over the runtime environment layer and the Virtual Functional Bus. This can be done similar
to the communication between application software components by the means of Sender-
Receiver or Client-Server communication.

AUTOSAR fulfils the high level requirements on input/output services defined in D2.1 [1].

3.1.4 Real-time support

The AUTOSAR standard is dedicated to real time systems. It supports the correct
implementation of timing requirements as well as the timing analysis and validation of the
build systems.

The fixed priority pre-emptive AUTOSAR OS prevents timing errors by using execution time
protection to guarantee a statically configured upper bound on the execution time of tasks.
Additional measures for preventing timing errors are locking time protection and inter-arrival
time protection. The AUTOSAR OS guarantees by the locking time protection a statically
configured upper bound on the time that resources are held by tasks and interrupts are
suspended/disabled by tasks. With the inter-arrival time protection a statically configured
lower time bound, permitting the transition of a task after activation or release to state ready,
is guaranteed by the AUTOSAR OS. (For further details see [18])

In the so-called timing extensions of AUTOSAR (for further details see [21]) timing events
and event chains (single events put in a correlation to each other) are used for the definition
of the expected timing behaviour as well as for an observation of the actual behaviour within
a system at a certain point in time. By this means the expected and the actually implemented
timing behaviour are decoupled and the timing specification can be validated.

AUTOSAR fulfils the high level requirements for real-time support defined in D2.1 [1].

3.1.5 Fault isolation

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 16 of 54

AUTOSAR provides with the BSW layer several features for fault isolation:

 Memory protection: The memory of OS modules is protected at runtime from access
by OS applications and other applications. The task memory is protected at runtime
from access from other tasks.

 Timing protection: The expected task time is controlled at runtime

 Peripherals protection: The access to peripherals is restricted at runtime to their
assigned applications (trusted applications)

 Service protection: OS modules are protected at runtime against corruption by
service calls.

The AUTOSAR OS provides Protection Hooks for notification of protection errors at runtime.

The number of this fault isolation services can be reduces, if necessary for the particular
application, due to scalability of the AUTOSAR OS.

AUTOSAR fulfils the high level requirements for fault isolation defined in D2.1 [1].

3.1.6 Health monitoring

Besides the notification of protection errors at runtime by Protection Hooks (see 3.1.5)
AUTOSAR provides a so-called Watchdog Manager, which monitors the application
execution flow at runtime.

It compares the application state (defined by the application designer as a checkpoint) with
preconfigured timing constrains for reaching the checkpoint. The introduction of checkpoints
within the application increases the configuration complexity and runtime overheads. The
number of checkpoints needs to be well thought through.

In case an execution flow error is detected by the Watchdog Manager a set of local or global
fault reactions can be executed, depending on the type of fault. The fault reaction can be
configured.

AUTOSAR fulfils the high level requirements for health monitoring defined in D2.1 [1].

3.1.7 Security services

AUTOSAR secures the on-board communication over standardized interface for
cryptographic services. The main features of the software-based security mechanisms
provided by AUTOSAR are: hash calculation, generation and verification of message
authentication codes and digital signatures and symmetrical encryption.

AUTOSAR fulfils the high level requirements for security services defined in D2.1 [1].

3.1.8 Requirements for underlying platform

The fault insolation services implemented by the AUTOSAR OS lead also to requirements for
the underlying platform:

 Memory protection: requires Memory Protection Unit (MPU)

 Timing protection: requires timers with high priority interrupt

 Peripherals protection: requires privilege modes

Besides these no further special requirements need to be fulfilled by the underlying platform
in order to be able to apply the AUTOSAR standard.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 17 of 54

3.2 Non-technical characteristics

3.2.1 System Architecture Engineering Method

The AUTOSAR standard defines the so-called AUTOSAR methodology, which covers all the
major steps of a development of a system with AUTOSAR and defines a common technical
approach in the system development.

The standard defines the process for system and ECU configuration as well as application
software component implementation and its integration into the system. (For further details
see [22])

3.2.2 Safety and the relevant standards

The safety standards that have been investigated in deliverable D2.1 [1] are as follows:

 EN 50126: Railway Applications – The Specification and Demonstration of Reliability,
Availability, Maintainability and Safety (RAMS)

 EN 50128: Railway Applications - Communication, Signalling and Processing
Systems Software For Railway Control and Protection Systems

 EN 50129: Railway Applications - Communication, Signalling and Processing
Systems - Safety Related Electronic Systems For Signalling

 EN 50159: Railway Applications - Communication, Signalling and Processing
Systems - Safety-Related Communication in Transmission Systems

Out of these four standards mentioned, owing to its guidance focused on the software, EN
50128 is the relevant standard related to the analysis of AUTOSAR.

The chosen approach for the AUTOSAR analysis is the same like the one applied to ARINC
653 (see Chapter 4) in order to have better comparability in the analysis results.

The analysis focuses on Chapter 7 of EN 50128, which provides a guidance in the
development of generic software. The one-to-one mapping of the requirements mentioned in
Chapter 7 of EN 50128 is provided in detail in Annex 2.

On a high level, there are no blocking requirements that would prevent AUTOSAR to be used
in accordance with EN 50128.

Since the standard EN 50128 is focused rather on the development of software including
specification, test and validation and does not provide direct requirements for the framework
used in the application software development like AUTOSAR. The development process
related requirements were not relevant or needed in order to be able to provide a statement
about the capability of AUTOSAR.

3.2.3 Security and the relevant standards

The security standards that have been investigated in deliverable D2.1 [1] are as follows:

 ISA/IEC 62443: Security for Industrial Automation and Control Systems

 ISO/IEC 15408 – Common Criteria: Evaluation Criteria for Information Technology
Security

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 18 of 54

 DIN VDE V 0831-104 (draft): IT Security Guideline based on IEC 62443

 DIN VDE V 0831-102 (draft): Protection profile for technical functions in railway
signalling

Out of these four standards mentioned, owing to its guidance focused on the software, IEC
62443 Part 3-3: “System security requirements and security levels” is the relevant standard
related to the analysis of AUTOSAR.

This part of the standard derives detailed technical system requirement form the general
requirements defined in part 1-1. The requirements are grouped into 7 groups related to the
general requirements.

The chosen approach for the AUTOSAR analysis is to provide a general statement to each
of the groups of security requirements and, if relevant, to address a particular detailed
requirement, which is at least partially covered by AUTOSAR, proving some reference to
standardized services.

The analysis results are provided in detail in Annex 3.

In general it could be concluded that only a minor part of the requirements in the standard
are addressed by AUTOSAR. AUTOSAR covers topics related to communication data
integrity, communication data confidentiality and partially the response to events.

On the other hand, there could not be identified a conflict between the not covered
requirements from IEC 62443-3-3 and AUTOSAR.

If a particular security level, as defined in the standard, needs to be achieved, besides usage
of AUTOSAR as a functional distribution architecture framework additional measures have to
be applied.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 19 of 54

Chapter 4 Comparative analysis of

ARINC 653

In this chapter, comparative analysis between the high level requirements of the next
generation TCMS and the SOTA of ARINC 653 will be carried out, taking the services and
functions provided by the hosting framework into account.

4.1 Technical characteristics

Technical characteristics consist mainly of configuration/management services, time
services, I/O services, etc., which are provided by the framework for the applications to
access the underlying hardware and the system integrator to configure the system. Based on
comparative analysis between frameworks, the technical gaps between TCMS and ARINC
653 could be identified to be overcome.

4.1.1 Configuration and management services

Configuration and management of the framework in ARINC 653 is expected to be under the
control of the system integrator and maintained with configuration tables, as well as using the
system API provided by the framework. For the next generation TCMS, reconfiguration of the
framework during running is also a defined requirement, which will result in more
configuration mechanisms than configuration tables and management services within ARINC
653.

4.1.1.1 Configuration services

In the ARINC 653 standard, resources are pre-allocated before the system starts to work, i.e.
ARINC 653 defines the applications not able to manage the system resources. According to
the high level requirements of the designed next generation TCMS, applications can invoke
configuration services to manage resources. For example, applications can involve the
reconfiguration service to change the required computing time or memory capability. In this
way, reconfiguration of the system results in the potential threats to spatial and temporal
partitioning of partitions within the running system. For this reason, other services like
schedulability checking service could be implemented by the framework for the applications,
so that applications are able to check whether the adjustment for their reconfiguration
requirements are applicable.

4.1.1.2 Management services

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 20 of 54

4.1.1.2.1 Partition management

The partition management services provided by ARINC 653 consist of status inquiring and
setting, which could be adopted in the TCMS partition management.

The next generation TCMS requires the framework to provide services to enable
configuration of the memory and execution time slots for the partitions. This requirement is
beyond the capability of ARINC 653, because memory and time capabilities for every
partition in ARINC 653 are pre-configured before the system starts up.

4.1.1.2.2 Process management

Mechanisms (e.g. mutex) used in ARINC 653 to prevent a running process from being pre-
empted, in order to safely access resources which demand mutually-exclusive access, also
satisfy the framework’s high level requirement to create and manage the concurrent threads.
Events are also used in the framework itself to synchronize the execution of threads.

4.1.1.2.3 Memory management

In ARINC 653, every partition has its associated memory spaces which are defined during
system configuration and initialization. That means, APplication/Executive (APEX) interface
does not need to provide memory allocation services, which are required in the next
generation TCMS framework. And all processes of a partition in ARINC 653 have access to
the same memory spaces of the partition. This includes also processes that are running on
different processor cores. If an application uses only ARINC 653 services, then no other
action on this part of the application is necessary to maintain memory coherency and
consistency of the data transferred through these services. The underlying OS and hardware
should be designed to take the maintaining responsibility. Since the designed TCMS offers
services to create, configure and manage shared memory, which is accessed by the code of
software components executed in the same thread, in different threads of the same partition
or in different threads of different partitions, it is necessary for the framework to provide
mechanisms for memory coherency and consistency management.

4.1.2 Time services

The ARINC 653 standard defines APEX to provide the unique time to all the hosted
applications, this mechanism meets the high level time requirements of next generation
TCMS. But it is necessary for the next generation TCMS to consider the inauguration of
trains. Since ARINC 653 was developed originally for avionic domain, inauguration is not
considered within the ARINC 653 standard. In order to guarantee the unique system time in
this situation, one consist can be elected to provide the time services for the whole system or
alternatively, synchronization between the clocks from different consists should be carried
out.

Time services for the applications like getting the time and suspending themselves as well as
updating their deadlines etc. are all defined within ARINC 653 and may be referred to the
design of architecture of the next generation TCMS.

4.1.3 Input/Output Services

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 21 of 54

ARINC 653 clearly defines operations and interfaces for inter-partition I/O via ARINC
sampling or queuing ports, I/O to physical devices or inter-module I/O are left to RTOS
implementer and other stakeholder to provide. According to the high level requirements of
next generation TCMS in D2.1, the framework should be able to create configurable
controllers to access I/O devices. Since the implementation of such controllers is associated
with the concrete I/O hardware, the designed TCMS framework provides only a generic
interface between applications and the Real Time Operating System (RTOS)/Hypervisor like
ARINC 653.

The required exchanging variable associated with I/O channel in the next generation TCMS
should be guaranteed by the TCMS to be available at the beginning/end of every basic cycle.
ARINC 653 does not restrict on the accessing time of the I/O interface. Therefore, in this
case, more restrictions on the I/O interface accessing in ARINC 653 should be defined to
match the high level requirement of next generation TCMS.

Synchronous behaviour between communication ports is not guaranteed by the APEX
interface, while the synchronous behaviour within the next generation TCMS is required.

4.1.4 Real-time support

Strictly deterministic scheduling of partitions over time satisfies the real-time requirements of
TCMS. LOCK-PREEMPTION and UNLOCK-PREEMPTION services provided by APEX can
also be useful to provide guarantees for the required non-pre-empted property of processes
within partitions hosted on the TCMS architecture.

In the ARINC 653 standard, all the partitions will be scheduled statically using the
configuration table. In this aspect, there exists a gap to the requirement that scheduling of
partitions in the TCMS should be feasible through the standard interface (API). Changing
scheduling of partitions could be achieved in different ways. In the case of inauguration,
reconfiguration requires to be done within reasonable time duration and one of the most
important aspects of reconfiguration is rescheduling of partitions, which does not occur in the
scope of ARINC 653.

Assigning the highest priority to the most critical threads within a partition is both defined in
ARINC 653 and high level requirements of next generation TCMS, while processors are
granted to the highest priority within the requirements in D2.1 [1] and the error handler is
assigned the highest priority within ARINC 653.

4.1.5 Fault isolation

According to the SOTA analysis of ARINC 653, the mechanisms which support fault isolation
in ARINC 653 standard must be built into the RTOS and typically utilize HW-based
mechanisms in System on Chip (SoC) / Memory Control Unit (MCU). The resources used by
each partition are specified at system build time. The corresponding objects (communication
channels, queues, events...) are created during initialization phase of this operational mode,
and then the time-partitions enter normal operating mode. Within a partition, a specific
partitioning RTOS can be executed, which can rate-monotonically schedule different tasks,
or use some other scheduling scheme. The objective is that within a partitioning period, only
one application gets all the resources and does not influence any other more or less critical
applications. Even if an interrupt is initiated, it shall not change time budget calculations for a
partition. This combination of space and time partitioning makes it possible for applications of
different criticalities to run concurrently on the same platform, while ensuring no interferences
between partitions.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 22 of 54

Based on the high level requirements of next generation TCMS in D2.1 [1], the SOTA
technologies used to implement APEX interface of ARINC 653[5] match the requirements
well regarding the strict time and space partitioning. Functional protection of different level of
privileged code and data in the implementation of ARINC 653 standard is also achieved
supported by hardware (e.g. MCU/SoC), which is also implementable for the next generation
TCMS.

4.1.6 Health monitoring

Within the specification of ARINC 653, the health information relevant for time-partitions is
collected in the health monitoring RTOS function, which is responsible for monitoring and
reporting hardware, application and O/S software faults and failures. After the health
information is passed to the health monitor, the health monitor identifies the type of faults and
determines the corresponding recovery actions based on the pre-defined actions that are
configured by the system designer. Faults are also sorted into different levels (e.g. process,
partition, and core module1) and different roles of system developer could define recovery
actions for different levels. For example, application developer can define the recovery action
for process failure and system integrator can decide which action to be carried out when
module failure occurs.

Based on the high level requirements of the next generation TCMS, the general
requirements are covered by the existing technologies for implementation of APEX. One
special aspect of railway domain is, that inauguration should be taken into account, which
may introduce another level of the whole system comparing to the ARINC 653 layered
architecture. Except for process- and partition- as well as module-level, a level of coupled
modules should be defined and for this additional level, particular recovery actions should
also be defined.

4.1.7 Security services

ARINC 653 is considered to be mainly a safety standard, rather than a security standard.
Therefore, very limited guidance is provided on security services. The scope of ARINC 653 is
explained in the document itself as follows:

“ARINC 653 provides a limited set of requirements and guidance for implementation of an
application program interface and supporting O/S behaviour. It does not provide a holistic
system definition needed to ensure all facets of security are covered.” [5]

Confidentiality: Covert channels and confidentiality are not covered within the scope of
ARINC 653. It is suggested that confidentiality is addressed in system requirements.

Authenticity: No information is provided in ARINC 653.

Data Integrity: The responsibility of ensuring the integrity of the message data is given to
the core module. In order to preserve the integrity of information managed by the services,
the requesting process is assumed to never be pre-empted during the execution of a service,
except at the scheduling points which are explicitly mentioned in the semantic description.

1 In the context of ARINC 653, when there are multiple processors or processor cores on a common hardware

element, each processor or set of processors that hosts a single ARINC 653 API execution context (i.e., execute a

single module schedule at any given time) is considered to constitute a core module.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 23 of 54

Security services defined in D2.1 [1], and mentioned above, are not covered within the scope
of ARINC 653. In ARINC 653, it is assumed that security is covered completely at the
application layer and no mechanisms are in place to provide security services in the
middleware.

4.1.8 Requirements for underlying platform

Both ARINC 653 and the next generation TCMS require, that any interrupts required by the
hardware should be served by the OS and they are strictly forbidden to disturb the time
partitioning of the system. Processor within these two frameworks are both required to have
sufficient capability to meet the worst-case timing requirements and have direct control of the
underlying I/O, memory resources and time resources. Enabling atomic operations for
implementing processing control constructs is expected to have minimal effect on
scheduling, while it may cause jitter on time slicing.

ARINC 653 standard only defines use of multiple processes within a partition scheduled to
execute concurrently on different processor cores. But the definition of scheduling
behaviours associated with multiple partitions scheduled to execute concurrently on different
processor cores is still an open issue. According to the high level requirements of next
generation TCMS [1], multiple partitions scheduled to be executed on different processor
cores should be defined, because in the inauguration situation, it is required to schedule all
the partitions from different consists concurrently.

4.2 Non-technical characteristics

In this section, comparative analysis between the high level requirements of the next
generation TCMS and the SOTA of ARINC 653 will be carried out, taking the non-technical
characteristics into account. Non-technical characteristics consist mainly of engineering
method, safety characteristic etc., which are put forward for the next generation TCMS.

4.2.1 System Architecture Engineering Method

As for avionic industry, ARINC 653 plays an important role in the standardization of the
interface for applications, in order to improve the reusability of applications and Validation
and Verification of both the platform and the applications. Before designing system
architecture for the specific standard, it is reasonable to verify that there are no errors
existing in the standard, because all parts of the implementations based on the standard are
safety relevant. Y.Zhao and other authors have formalized the ARINC 653 using Event-B [23]
and provided a necessary foundation for the formal development and verification of ARINC
653 compliant operating systems and applications. After verification, three hidden errors and
three cases of incomplete specification were discovered, which causes the standard to be
improved. Based on the existing study case mentioned above, Event-B could also be chosen
to formulize the specification of the next generation TCMS and to enable verifying the
correctness of the specification before implementing it.

Donald G. Firesmith [24] mentioned that most of the existing projects have their own
architecture engineering methods which are always built up based on the previous ones.
Every project is unique and all the systems vary largely in terms of requirements, application
domains etc., which can affect the system architecture directly. For this reason, most
architecture teams have had to tailor the previously existing methods to meet the needs of
the endeavor with spending lot of cost on the tailoring. Based on the main reason above and

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 24 of 54

other reasons, architecture engineering method should be developed. As mentioned in the
high level requirement of the next generation TCMS in D2.1 [1], the Method Framework for
Engineering System Architectures (MFESA) could be used for establishing the system
architecture engineering method for the next generation TCMS framework.

4.2.2 Safety and the relevant standards

The safety standards that have been investigated earlier in the deliverable D2.1 [1] named
“State of the Art Document” are as follows:

 EN 50126: Railway Applications – The Specification and Demonstration of Reliability,
Availability, Maintainability and Safety (RAMS)

 EN 50128: Railway Applications - Communication, Signalling and Processing
Systems Software For Railway Control and Protection Systems

 EN 50129: Railway Applications - Communication, Signalling and Processing
Systems - Safety Related Electronic Systems For Signalling

 EN 50159: Railway Applications - Communication, Signalling and Processing
Systems - Safety-Related Communication in Transmission Systems

Out of these four standards mentioned, owing to its guidance focused on the software, EN
50128 is the relevant standard related to the analysis of ARINC 653. This analysis includes
one-to-one mapping of the requirements mentioned in EN 50128 [4] to the services provided
by ARINC 653 and is provided in detail in Annex 1. In the first column, the title numbers for
the requirements in EN 50128 are provided. This is due to the copyrights of the standard.
Later, the requirements are mapped to ARINC 653 and in the final column, an extended
explanation is provided where applicable. These comments cover more details on the
approach, specific for Safe4RAIL implementation.

On a high level, there are no blocking requirements that would prevent ARINC 653 to be
used in accordance with EN 50128.

Note that, since ARINC 653 standard provides the functional specification of the middleware
layer, it does not provide a reference implementation. The EN 50128 provides a detailed set
of requirements on how software shall be implemented which are thus not covered by ARINC
653 and are referenced as Not Applicable in the analysis. EN 50128 is providing high level
information on the entire development process starting from the generation of system level
requirements until the validation and maintenance phase and provides this information in the
context of deliverable documents. On the other hand, ARINC 653 focuses on a specific
interface between the APEX and the API and provides an in depth definition of this interface,
while giving its user the freedom on the implementation and development process of a
compliant software platform in their own way. Despite this level of difference between the
documents, an analysis is delivered (see Annex 1) focusing on Chapter 7 of EN 50158,
where detailed guidance is provided on software development.

4.2.3 Security and the relevant standards

The security standards that have been investigated in deliverable D2.1 [1] are as follows:

 ISA/IEC 62443: Security for Industrial Automation and Control Systems

 ISO/IEC 15408 – Common Criteria: Evaluation Criteria for Information Technology
Security

 DIN VDE V 0831-104 (draft): IT Security Guideline based on IEC 62443 [25]

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 25 of 54

 DIN VDE V 0831-102 (draft): Protection profile for technical functions in railway
signalling

As mentioned earlier in the section 4.1.7, ARINC 653 is a technical specification providing
guidance on standardized interfaces for Integrated Modular Avionics. The primary objective
of ARINC 653 is to define a general purpose APEX API between the Core Software (CSW)
of an Avionics Computer Resource (ACR) and the application software. The sole suggestion
ARINC 653 provides is that security is managed on the application level.

As a conclusion, since ARINC 653 does not offer any functional services related to security;
it cannot be assessed or compared to respective security standards, nor can it be used as a
source of guidance for security related issues. The utilization of other standards from
different industries should be considered. In the case that such standards do not exist, a
unique approach has to be developed within the project to handle security aspects.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 26 of 54

Chapter 5 Comparative analysis of

existing TCMSs

5.1 Technical characteristics

Depending on the underlying communication platform (and the time of original
implementation), the TCMSs provide different applications (functions in TCN terminology).
The available functions grew with the larger bandwidth of ETB/ECN based systems
compared to Wire Train Bus (WTB)/Multifunction Vehicle Bus (MVB) based systems mainly
by integrating more diagnostics, passenger information and monitoring functions. See also
5.1.3 of D2.1 [1].

Here only the frameworks/libraries of three example TCMSs are taken into account:

 MITRAC TCMS: IPTCom

 IEC61375-2-3: TRDP (as TCNOpen implementation)

 IEC61375-3-1: MVB

5.1.1 Configuration and management services

The TCMS network is a static network on consist level - devices retain their functions and
physical location throughout their service period. Logical location and addressing differs for
train-wide communication and is related to the ETB or WTB inauguration when coupling
several consists.

5.1.1.1 Configuration services

Devices connected to the TCMS need configuration files, which define the behaviour of the
device and optionally their identity (address). These files are usually loaded on start-up and
may reside on an externally accessible and detachable storage device (USB). Table 1 shows
common configuration handling.

Framework / Middleware Configuration file contains File

TRDP End Device Interface, telegram and dataset definitions *.xml
vendor-specific

TRDP ETBN/ECSP Consist information (all device addresses
and functions in consist)

*.xml

IPTCom End Device Telegram and dataset definitions ipt_config.xml

IPTCom Train Switch
(IPTDir)

Consist information (all device addresses
and functions in consist)

address.xml
cstSta.xml

MVB/WTB-TCN End Device Traffic store and dataset definitions

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 27 of 54

Framework / Middleware Configuration file contains File

MVB/WTB-TCN Gateway Consist information (all device addresses
and functions in consist)

Table 1: Device Configuration

5.1.1.2 Management services

Commissioning and diagnostics are highly vendor specific for all TCMSs.

There is no common or standardized way for updating TCMS devices; it is common practice
to keep necessary configuration data for a device separately (e.g. on a configuration plug) to
allow for easy replacement in case of a device hardware failure.

Partition, process and memory management of all TCMS implementations depend on the
used operating systems and safety levels the ECUs must achieve. IPTCom on Linux allows
partitioning through Linux’ MMU support, although it still offers black channel communication
only.

5.1.2 Time services

The ETB/ECN related parts of the current standard propose the optional use of Network
Time Protocol (NTP), but do not state how and where the time server shall be located.

Process data telegrams in TRDP Process Data telegrams carry a sequence counter, only.
There is no time stamp, neither absolute nor relative, in the telegram header.

Process data telegrams in IPTCom Process Data telegrams carry a time stamp in µs
resolution. The time source may be unsynchronized. The time shall increment monotonically
and linearly in time.

The MVB is a master/slave system - the master determines the timing and validation (sink-
time supervision) of the data. The time base is consist local and synchronization is vendor-
specific.

Current TCMSs only provide limited time services due to their relaxed timing requirements (≥
10ms cycle times).

5.1.3 Input/Output Services

I/O characteristics are device and project specific. IEC61371-1 defines basic data types,
which can be mapped to I/O lines, but the mapping itself is up to the concrete device (and its
mapping table).

I/O Ports on an ECU are usually addressed by pre-configured datasets, which map telegram
variables of different types (BITSET8, ANTIVALENT, BOOL8 etc.) to numbered I/O ports.
ECUs with multiple I/O ports are called Multiple Input/Output (MIO).

The current TCMSs allow to define and communicate I/O variables remotely as defined
in[26], but accessing (and mapping) I/O ports and their meaning is in the host application’s
responsibility and configuration dependant.

5.1.4 Real-time support

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 28 of 54

TRDP's Virtual Operating System (VOS) abstraction layer supports threading services of the
underlying operating system and provides those services to the TCMS application. The
TCNOpen TRDP implementation only provides a low, single threaded API, although it is
prepared for temporal partitioning by use of threads, mutexes and communication queues.

IPTCom provides a higher level interface including a system-wide service (not on VxWorks),
which allows several spatial partitioned processes to communicate via one IPTCom instance.
This imposes an additional latency due to the use of system queues and additional buffering.

10ms is the minimal interval time for process data a device must be able to handle
(according to [IEC61375-2-3]). However, there is no hard real time handling, if the underlying
operating system does not support it [27].

TCNOpen TRDP can be extended to support hard real time requirements by using a real
time OS (e.g. VxWorks, rcX) and a ‘driving’ application.

5.1.5 Fault isolation

TCNOpen TRDP does not support memory space partitioning by itself because of its low
level API. If the underlying operating system supports spatial partitioning the API could
provide those services to a TCMS application.

IPTCom provides spatial partitioning by a system wide daemon (on Linux and Windows
OSes), but data exchange is handled by a shared memory area, where all attached TCMS
applications have read/write access to. One application can access other applications
communication data.

For completeness: On MVB, depending on the implementation, the traffic store can be
accessed by any application.

Fault isolation is not fully handled by any current TCMS framework but is implementation and
OS dependant.

5.1.6 Health monitoring

TRDP provides some standardized statistics and error retrieval, mainly simple counters (e.g.
number of protocol, Cyclic Redundancy Check (CRC) and timeout errors). Status and diagnosis
lie in the responsibility of the TCMS application and is vendor specific. The same applies to
IPTCom and MVB. The extent of logging information can be set by the device’s configuration
and/or by the TCMS application. Counters and statistics can be retrieved remotely by special
request messages (Annex A of [28] for TRDP, see[29] for IPTCom).

All TCMSs fulfil the high level requirements for health monitoring defined in D2.1[1]. Chapter
2.1.6 to some extent. The TCMS application is responsible to supply this information.

5.1.7 Security services

Confidentiality: Network traffic is not encrypted [28] Annex B, [30].

Authenticity: Safe Data Transmission (SDT) protected messages (SIL2) are validated by
verifying the correct sender and telegram timing, only [28] Annex B.

Data Integrity: Without SDT, TRDP protects data only by a 32Bit frame checksum (FCS)
over the protocol header. TRDP relies on the Ethernet FCS for transmission errors on non-
safe data. IPTCom provides a higher data integrity: Each block of 256 bytes user data is
protected by a 32Bit CRC [30].

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 29 of 54

Provision against security threads is mainly realized by network isolation using hardware
gateways/firewalls to deny/allow only specific traffic to the TCMS network ('closed network').

TRDP and IPTCom depend on project/system wide measures for security by network layout,
while MVB through the master/slave communication concept is less vulnerable to e.g.
intruders.

5.1.8 Requirements for underlying platform

IPTCom demands the most system resources: 4-8MB of memory, 100MIPS for medium
sized traffic handling, multithreaded operating system. All three TCMSs can use at least
VxWorks, Linux/POSIX and Integrity as underlying operating system.

Framework /
Middleware

Threads /
Tasks

Memory Performance needs
(average)

Cycle / Priority

TCNOpen TRDP
[27]

≥ 2 ≥ 500kB ca. 50MIPS ≥10ms/high

IPTCom [29] ≥ 4 ≥ 4MB ca. 100MIPS ≥10ms/high

MVB-TCN

[31]

≥ 2 unknown unknown ≥16ms/high

Table 2: TCMS Needed Resources

5.1.9 Safety Services

All TCMSs support an optional safety layer SDT (Safe Data Transmission). It provides a safe
communication path between a source of safety related data and one or several sinks of
those data. “The SDT channel” starts and ends at safe applications. The safety devices use
the same communication channel as standard/non-safe devices. The SDT-Layer at source
side adds protocol information and on that basis the receiver side validates the received
telegrams.

Additional measures (‘safe’ CPU, extended memory checks, dual channel computation etc.)
need to be taken, apart from using SDT to achieve any SIL level. Any TCMS communication
is currently considered as black channel communication.

 SIL 2 can be achieved. (See Annex B)

5.2 Non-technical characteristics

5.2.1 System Architecture Engineering Method

System design for any of the mentioned TCMSs is vendor specific. Every rail vehicle
manufacturer maintains its own tool chains. One common method for consist functional
design uses the standard IEC 61131 [32] to program Programmable Logic Controller (PLCs).

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 30 of 54

5.2.2 Safety and the relevant standards

Current implementations of MVB or IPTCom based TCMSs had, at least in Europe, to follow
the according standards (EN 50126, EN 50128, EN 50129, EN 50159) regarding software.
Coverage of these standards has been shown in D2.1 SOTA Chapter 2.2.2 [1].

As software needs hardware to run, for railway hardware the EN 50155 needs to be followed
(and depending on requirements from railway operators additional regulations may apply).

Although the defined standard for Ethernet-based TCMS supports several measures to be
able to reach at least safety level SIL 2, some definitions are vague i.e. may lead to
misunderstandings. For example, an IEC compliant train switch (ETBN) must be developed
and manufactured in accordance with SIL 2, because any SIL 2 compliant end device in an
ECN depends on direction information provided by the ECSP (which in turn relies on
inauguration information from the ETBN).

Higher levels of safety integrity were achieved by providing separate train lines in addition to
the ETB (e.g. pneumatic brake control, direction indication through separate control line etc.).

To reduce these separate train lines, devices on the ETB, respective the distributed
framework, must provide similar safety measures defined in EN 50128 for SIL 4.

5.2.3 Security and the relevant standards

Security in all mentioned TCMSs is currently only available when defined and instantiated as
a 'closed network'. Physical access to the TCMS network is often protected by locked
switchboards, sometimes only protected by a simple carriage key - some systems may allow
access to the network cables from outside the carbine and in case WLAN is used, this also
will add to its vulnerability.

[25] is a series of standards that define procedures for implementing secure industrial control
systems. It applies to system integrators, security practitioners, and control systems
manufacturers responsible for manufacturing, designing, implementing, or managing
industrial automation and control systems. As long as "Railway Applications -
Communication, signalling and processing systems – IT security requirements for electronic
systems for signalling" is under preparation (see D2.1 2.2.3 [1]), [25] is the relevant standard
for any TCMS.

Rail vehicle manufacturers and subsystem suppliers must also maintain their IT-
infrastructure (tool chain) according to[33], to ensure the correct behaviour of all tools and
their output (applications, firmware and configurations).

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 31 of 54

Chapter 6 Summary and conclusion

The main objective of Safe4RAIL project is to develop a framework for the modular
integration and execution of mixed-criticality TCMS applications with safety, security and
real-time requirements, for what it must support functional distribution, application
interoperability, system reconfiguration, deterministic communication and hardware
abstraction.

This document provides a detailed analysis of the features offered by generic and domain-
specific solutions with similar goals to the ones of the next generation TCMS framework. In
particular, RTOS, hypervisor, AUTOSAR, ARINC 653 and existing TCMSs have been
compared with the high level requirements defined in D2.1.

In the hypervisor domain PikeOS and XtratuM have been analysed, coming to the conclusion
that PikeOS has some technical characteristics regarding its partitioning scheme that have
made it the first SIL4 hypervisor certified according to EN 50128 on a multi-core platform,
and thus it is a proper technology on which to build the next generation TCMS framework.

In the operating systems field Integrity, VxWorks and LynxOS have been compared,
concluding that Integrity could be a potential candidate because of its scheduling and
resource allocation strategies and numerous safety certifications such as FAA: DO-178B,
Level A and IEC: 61508 SIL 3.

The technical analysis of AUTOSAR has revealed that it fulfils the high level requirements
related with partition, process, time, memory and communication management, discovery,
time, input/output and security services, as well as real-time support, fault isolation and
health monitoring. However, the static configuration scheme of AUTOSAR makes difficult to
cover the requirement to handle online system reconfiguration at train inauguration.
Regarding EN 50128 safety and IEC 62443-3-3 security standards, there are no blocking
requirements that would prevent AUTOSAR to be used in accordance with them, although it
does not cover all of the requirements. Additionally, AUTOSAR defines a system architecture
engineering methodology, covering all the major steps of the development of a system and
defining a common technical approach in the system development.

The technical analysis of ARINC 653 shows that it fulfils completely the high level
requirements of process management, time services, fault isolation and health monitoring,
whereas the ones related with partition and memory management as well as real-time
support are covered only partially because they can be carried out statically but not
dynamically. In general, ARINC 653 does not allow runtime (re)configuration of the system
and does not provide input/output and security services. Regarding EN 50128 and IEC
62443-3-3, there are no blocking requirements that would prevent ARINC 653 to be used in
accordance with them, although it does not cover all of the requirements of the first one and
none of the second. ARINC 653 does not define a standard development methodology but
there are research works that make relevant contributions to this topic.

The technical analysis of existing TCMSs standards and technologies such as IPTCom,
TRDP and MVB has revealed that they fulfil to some extent the high level requirements of
only health monitoring, security services, spatial partition in the case of IPTCom and time
services in the case of MVB. On the other hand, it seems that there are no blocking
requirements that would prevent these technologies to be used in accordance with the EN
50128 and IEC 62443-3-3. Finally, it should be mentioned that there is no standard
engineering methodology defined in the context of the exiting TCMSs.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 32 of 54

To summarize, the main conclusion that can be extracted is that none of the analysed
technologies cover all the defined high level requirements, so they cannot be used directly to
solve the problem approached in Safe4RAIL project. Nevertheless, ARINC 653 and specially
AUTOSAR offer some very interesting features and solutions that have to be taken into
account during the definition, design and development of the next generation TCMS
framework.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 33 of 54

Chapter 7 List of Abbreviations

ACR Avionics Computer Resource

AMP Asymmetric Multiprocessing

APEX APplication/EXecutive

API Application Program Interface

ARINC Avionics Application Standard Software
Interface

ARP Address Resolution Protocol

AUTOSAR Automotive Open System Architecture

BIT Build in Tests

BSP Board Support Package

BSW Basic Software

CAN Controller Area Network

COTS Commercial Off The Shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSW Core Software

ECN Ethernet Consist Network

ECSP ETB Control Service Provider

ECU Electronic Control Unit

ETB Ethernet Train Backbone

ETBN Ethernet Train Backbone Node

FCS Frame CheckSum

FreeBSD Unix implementation (Berkley Software
Distribution)

HM Health Monitoring

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 34 of 54

I/O Input/Output

IDE Integrated Development Environment

IPTCom IP-Train Communication (Implementation of
the IP-Train Wire protocol, prpriatary)

IPTDir IP-Train Directory services

MCU Memory Control Unit

MFESA Method Framework for Engineering System
Architectures

MIO Multiple Input/Output

MMU Memory Management Unit

MPU Memory Protection Unit

MVB Multifunction Vehicle Bus

NTP Network Time Protocol

OS Operating System

PLCs Programmable Logic Controller

POSIX Portable Operating System Interface for
UNIX

RAMS Reliability, Availability, Maintainability and
Safety

ROM Read Only Memory

RT Real Time

RTOS Real Time Operating System

RTP Real Time Process

Safe4RAIL Safe architecture for Robust distributed
Application Integration in roLling stock

SDT Safe Data Transmission

SIL Safety Integrity Level

SMP Symmetric Multiprocessing

SoC System on Chip

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 35 of 54

SOTA State Of The Art

StbM Synchronized Time-Base Manager

TCMS TCMS

TCN Train Communication Network

TRDP Train Real-time Data Protocol

VFB Virtual Functional Bus

VOS Virtual Operating System

WTB Wire Train Bus

XML eXtensible Markup Language

Table 3: List of Abbreviations

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 36 of 54

Chapter 8 Bibliography

[1] „D2.1 Report on state-of-the-art of 'functional distribution architecture' frameworks and
solutions,“ Safe4RAIL Project, 2016.

[2] S. Whitepaper, „PikeOS Safe Real-Time Scheduling - Adaptive Time-Partitioning
Scheduler for EN 50128 certified Multicore Platform,“ 2016.

[3] „Sysgo.com,“ Embedding Innovation, [Online]. Available:
https://www.sysgo.com/products/pikeos-hypervisor/safety-architecture/. [Zugriff am 16
02 2017].

[4] E. CENELEC, „50128-Railway applications-Communication, signalling and processing
systems-Software for railway control and protection systems,“ Book EN, 2012.

[5] Airlines Electronic Engineering Committee et al., „Avionics application software standard
interface part 0 overview of ARINC 653. ARINC Document ARINC Specification 653P1-
2,“ Aeronautical Radio, Inc., Annapolis, Maryland, 2015.

[6] „Sysgo PikeOS RTOS Technology,“ [Online]. Available:
https://www.sysgo.com/products/pikeos-hypervisor/rtos-technology/. [Zugriff am 16 02
2017].

[7] S. a. M. J. a. B. S. a. W. T. a. K.-B. F. a. H. P. a. K. G. a. N. K. a. L. K. Fürst, AUTOSAR-
-A Worldwide Standard is on the Road, Baden-Baden: 14th International VDI Congress
Electronic Systems for Vehicles, 2009.

[8] „Sysgo Eclipse based development,“ [Online]. Available:
https://www.sysgo.com/products/pikeos-hypervisor/eclipse-based-codeo/. [Zugriff am 16
02 2017].

[9] I. R. a. A. C. M. Masmano, „XtratuM: a Hypervisor for Safety Critical Embedded
Systems,“ Instituto de Informatica Industrial, Universidad Politecnica de Valencia
(Spain).

[10] I. R. M. M. P. A. a. J. M. A. Crespo, „XTRATUM: AN OPEN SOURCE HYPERVISOR
FOR TSP EMBEDDED SYSTEMS IN,“ Instituto de Inform´atica Industrial, Universidad
Polit´ecnica de Valencia, Spain, CNES, France.

[11] „https://www.windriver.com“.

[12] D. W. R. Obermaisser, „Architectures for Mixed-Criticality Systems based on Networked
Multi-Core Chips,“ 2014.

[13] P. P. a. L. Kinnan., „Safety-critical software development for integrated modular
avionics.,“ Embedded System Engineering, 2003.

[14] „http://www.lynx.com/“.

[15] „http://www.ghs.com/products/rtos/integrity_virtualization.html“.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 37 of 54

[16] „Integrity RTOS,“ Green Hills, [Online]. Available:
http://www.ghs.com/products/rtos/integrity.html. [Zugriff am 17 02 2017].

[17] AUTOSAR, „Specification of ECU Configuration,“ 2016.

[18] AUTOSAR, „Specification of Operating System,“ 2016.

[19] AUTOSAR, „Specification of Memory Mapping,“ 2016.

[20] AUTOSAR, „Specification of RTE,“ 2016.

[21] AUTOSAR, „Specification of Timing Extentions,“ 2016.

[22] AUTOSAR, „Autosar Methodology,“ 2016.

[23] Y. Y. Z. S. D. &. L. Y. Zhao, „Event-based Formalization of Safety-critical Operating
System Standards: An Experience Report on ARINC 653 using Event-B,“ in s Software
Reliability Engineering (ISSRE), 2015 IEEE 26th International Symposium on, IEEE,
2015, pp. 281--292.

[24] D. G. a. C. P. a. F. D. a. H. C. B. a. L. I. D. T. a. M. T. Firesmith, „The method framework
for engineering system architectures,“ CRC Press, 2008.

[25] Industrial communication networks. Network and system security. System security
requirements and security levels, BS IEC 62443-3-3:2013-10-31.

[26] Electronic railway equipment - Train communication network - Part 1: TCN - Train
Communication Network General Architecture", EN 61375-1:2012.

[27] TRDP User’s Manual, TCN-TRDP2-D-BOM-011-27.

[28] Electronic railway equipment – Train communication network (TCN) - Part 2-3: TCN
communication profile, EN 61375-2-3:2015 + AC:2016-01 + AC:2016-11.

[29] IPTCom User and Integration Manual, 3EGM019001-0224 AB (Bombardier).

[30] IPT Wire Protocols, 3EST000211-9664, Rev. C (Bombardier).

[31] Electronic Railway Equipment - Train Communication Network - Part 3-1: MVB -
Multipurpose Vehicle Bus, EN 61375-3-1:2012.

[32] Programmable Controllers - Part 3: Programming Languages, IEC 61131-3:2013.

[33] Information technology - Security techniques - Information security management
systems - Requirements, ISO/IEC 27001:2013-10 .

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 38 of 54

Chapter 9 Annex 1 – ARINC 653 Analysis

to EN50128

Section Nb
EN 50128

Compliance
of ARINC653

Comments & ARINC 653
application

Comments & S4R
Implementation

7 Generic software development

7.1 Lifecycle and documentation for generic software

N/A

Requirements provided in this
section are not in the scope of
ARINC 653

7.2 Software requirements

7.2.4.1 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Software requirements are
covered in D2.5

7.2.4.2 Partially
ARINC 653 is focused first and
foremost on Functionality and
Safety.

Software requirements are
covered in D2.5

7.2.4.3 N/A
Requirement is not covered within
the scope of ARINC653.

SIL is defined as 4 for S4R.

7.2.4.4 N/A
Requirement is not covered within
the scope of ARINC653.

EuroSpec on railways defines the
properties for requirements.

7.2.4.5 N/A
Requirement is not covered within
the scope of ARINC653.

Self-evident requirement

7.2.4.6 Yes
SW and Application interface is
defined in Part 1 of ARINC 653

The interface within the core
module have to be defined
between WP1 and WP2. The
external interface between the
core module and the applications
have to be defined between CTA
and S4R.

7.2.4.7 Yes
Two modes of operation are
identified, i.e. Startup (Cold Start,
Warm Start) and Normal.

7.2.4.8 Yes

Health Monitoring systems are
available. System architect and
application specialist can
implement a procedure to detect
the errors.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 39 of 54

7.2.4.9 Partially

In order to isolate multiple
partitions in a shared resource
environment, the hardware should
provide the O/S with the ability to
restrict memory spaces, processing
time, and access to I/O for each
individual partition.

An example case can be found in
ARINC 659.

ARINC664-Part0-1 CH 1.2:
"ARINC 653 is intended for use in a
partitioned software environment. In
order to assure a high degree of
portability, aspects of the partitioned
environment are
discussed and assumed. However,
ARINC 653 does not define the
complete
system, hardware, and software
requirements for partitioning nor does
it provide guidance on proper
implementation of partitioning, and in
particular, robust
partitioning. It must not be construed
that compliance to ARINC 653 assures
robust
partitioning."

7.2.4.10 Yes

Errors are detected by several
elements:
* Hardware – memory protection
violation, privilege execution
violation, stack overflow, zero
divide, timer interrupt, I/O error
* O/S – configuration, deadline
* Application – failure of sensor,
discrepancy in a multiple
redundant output
Specific measures are not
mentioned in this standard.

7.2.4.11 Yes
Health Monitoring systems and
built-in self tests are available.

7.2.4.12 Yes
All safety functions are tested in
the validation phase.

It is assumed that software
platform provider will already
implement all mechanisms and
continuous testing for key
mechanisms, such as partitioning
or timing control.

7.2.4.13 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Self-evident requirement

7.2.4.14 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Self-evident requirement

7.2.4.15 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Techniques and measures are
implementation dependant and
provider dependant.

7.2.4.16 Yes Software specification
requirements for API are defined in
ARINC 653 Part 3: Avionics
Application Software Standard
Interface Part 3A – Conformity Test
Specification for ARINC 653.

7.2.4.17 Yes

7.2.4.18 Yes

7.2.4.19 Yes

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 40 of 54

7.2.4.20 Yes

The system integrator will be
responsible for verifying that the
complete system fulfills its
functional requirements when
applications are integrated and for
ensuring that availability and
integrity requirements are met.
Verification that application
software fulfills its functional
requirements will be carried out by
the supplier of the application.

Verification is out the scope of
S4R. The future projects to be
developed after S4R can cover
verification issues. For S4R the
proof of concept will be
provided.

7.2.4.21 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

7.2.4.22 N/A

Requirement covers software
integration and testingan is not
covered within the scope of
ARINC653 which is a software
platfroms definition.

7.3 Architecture and Design

7.3.4.1

Partially, no
requirements

just an
overview

The software architecture is
dealth within the System
Architecture together with
Hardware. ARINC 653 part 0
chapter 1 and ARINC 653 part 1
chapter 2 give more detailed
information on the architecture.

7.3.4.2 Partially

7.3.4.3 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Self-evident requirement

7.3.4.4 Yes

The software architecture is
dealth within the System
Architecture together with
Hardware, and describes relevant
interactions.

7.3.4.5 N/A

The condition of pre-existing or
pre-validated components are
not covered in ARINC 653. No
information can be found on how
to deal with the depiction of SILs
of components in the software
architecture. Advisory ciruclars
from FAA handle modifiable,
COTS or reusable components.

7.3.4.6 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Self-evident requirement

7.3.4.7 N/A
The condition of pre-existing
components are not covered in
ARINC 653.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 41 of 54

7.3.4.8 N/A
The condition of pre-existing
components are not covered in
ARINC 653.

Self-evident requirement

7.3.4.9 N/A
The SILs of components are not
covered in the scope of ARINC
653

Self-evident requirement

7.3.4.10 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Self-evident requirement

7.3.4.11 Yes

Processes may be designed for
periodic or aperiodic execution,
the occurrence of a fault may
require processes to be
reinitialized or terminated, and a
method to prevent a running
process from being preempted is
required in order to safely access
resources that demand mutually-
exclusive access.

7.3.4.12 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Self-evident requirement

7.3.4.13 Yes

The aim of ARINC 653 is to define
this interface between the
Applications and the Core
Software. Parts 1 and 2 of ARINC
653 provide a very detailed set of
considerations regarding this
interface.

7.3.4.14 Yes
Some of the techniques and
measures are mentioned in the
scope of ARINC 653.

7.3.4.15
Partly

(implementati
on-specific)

Instead of architecture level
definition, ARINC 653 defines the
interface between Core SW and
Applications. According to ARINC
653:
It is intended for this interface to
be as generic as possible, since an
interface with too much
complexity or too many system-
specific features is normally not
accepted over a variety of
systems. The software
specifications of the APEX
interface are High-Order
Language (HOL) independent,
allowing systems using different
compilers and languages to
follow

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 42 of 54

this interface.

7.3.4.16 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Self-evident requirement

7.3.4.17 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

There is no intention to use the
prototype built within S4R in a
target system. It is planned for
proof-of-concept pahse of the
project only.

7.3.4.18 Yes

The aim of ARINC 653 is to define
this interface between the
Applications and the Core
Software. Parts 1 and 2 of ARINC
653 provide a very detailed set of
considerations regarding this
interface.

Self-evident requirement

7.3.4.19 Yes

The aim of ARINC 653 is to define
this interface between the
Applications and the Core
Software. Parts 1 and 2 of ARINC
653 provide a very detailed set of
considerations regarding this
interface.

7.3.4.20 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Requirements, Architecture and
Interface Documents are
covered; however, design
specification is not covered
within the scope of S4R.

7.3.4.21 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Requirements, Architecture and
Interface Documents are
covered; however, design
specification is not covered
within the scope of S4R.

7.3.4.22 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Design specification is not
covered within the scope of S4R.

7.3.4.23 N/A
a, b, c) Figure 1.2, Core Module
Component Relationship, was
deleted by Supplement 3 of

Design specification is not
covered within the scope of S4R.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 43 of 54

ARINC 653.

7.3.4.24
Only Modular

Approach

Specific techniques and measures
are mentioned in the scope of
ARINC 653, only on modular
approach.

7.3.4.25 N/A
Requirement is not covered
within the scope of ARINC653.

7.3.4.26 N/A
Requirement is not covered
within the scope of ARINC653.

7.3.4.27 N/A
Requirement is not covered
within the scope of ARINC653.

7.3.4.28 N/A

Requirement is not covered
within the scope of ARINC653.
This document is intended to
complement "ARINC Report 651:
Design Guidance for Integrated
Modular Avionics", where more
information on design method
properties could be found.

7.3.4.29 /
7.3.4.39

N/A

Integration tests are not covered
within the scope of S4R.
Therefore a test specification will
not be produced in this project.

7.3.4.40 N/A

Verification details are not
covered within the scope of
ARINC653. Responsibility is
defined as :
The system integrator, through
use of supporting tools, will be
responsible for verifying the
contents of the configuration
tables against the capabilities
supported by the core modules
(e.g., available memory, available
processor cores) and the
capabilities required by the
applications hosted on the core
modules.

Instead of a full verification
process, a proof-of-concept
demonstration will be done
within the scope of S4R.

7.3.4.41 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Instead of a full verification
process, a proof-of-concept
demonstration will be done
within the scope of S4R.

7.3.4.42 N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

7.3.4.43 N/A
Requirement is too high level, not
covered within the scope of

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 44 of 54

ARINC653.

7.4 Component design

7.4.4.1 N/A
Component in 50128 is a SW
module

7.4.4.2 N/A

the system integrator (not the
application developer)
configures the channel connections
within an integrated module and
the channel connections
between an integrated module and
components external to the
integrated module.

7.4.4.3 N/A

Requirement is not covered within
the scope of ARINC653. This
document is intended to
complement "ARINC Report 651:
Design Guidance for Integrated
Modular Avionics", where more
information on design method
properties could be found.

7.4.4.4 /
7.4.4.13

N/A
Requirement is too high level, not
covered within the scope of
ARINC653.

Self-evident requirement

7.5 Component implementation and testing

All N/A
Requirements provided in this
section are not in the scope of
ARINC 653

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 45 of 54

Chapter 10 Annex 2 – AUTOSAR Analysis

to EN50128

Section Nb
EN 50128

Compliance
of AUTOSAR

Comments & AUTOSAR application
Comments & S4R
Implementation

7 Generic software development

7.1 Lifecycle and documentation for generic software

All N/A
Requirements in this section are not covered
within the scope of AUTOSAR

7.2 Software requirements

7.2.4.1 N/A
Requirement is not covered within the scope of
AUTOSAR

Software
requirements are
covered in D2.5

7.2.4.2 N/A
Requirement is not covered within the scope of
AUTOSAR

Software
requirements are
covered in D2.5

7.2.4.3 N/A
Requirement is not covered within the scope of
AUTOSAR

SIL is defined as 4
for S4R.

7.2.4.4 N/A
Requirement is not covered within the scope of
AUTOSAR

EuroSpec on
railways defines
the properties for
requirements.

7.2.4.5 N/A
Requirement is not covered within the scope of
AUTOSAR

Self-evident
requirement

7.2.4.6 Yes

According to the AUTOSAR methodology the
interfaces of the application software
(components) are defined during the system
configuration.
All other interfaces and interface types (between
basic software modules and between basic
software and runtime environment) are defined in
the AUTOSAR standard.

The interface
within the core
module have to be
defined between
WP1 and WP2. The
external interface
between the core
module and the
applications have
to be defined
between CTA and
S4R.

7.2.4.7 Yes
The ECU State Manager defines the global states
like Start up, Run, Shut down, Sleep, Wake up, Off

7.2.4.8 Yes

AUTOSAR defines a set of diagnostic services (e.g.
Diagnostic event manager, Diagnostic
communication manager, Function inhibition
manager).

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 46 of 54

7.2.4.9 Yes

AUTOSAR defines operation system (OS) in 4
scalability classes (SCs)
SC1: deterministic real time operating system
(RTOS) (task, events, counters, messages)
SC2: timing based task determinism (low-latency,
precise timing for periodic tasks)
SC3: protected memory for tasks
SC4: timing and memory protected tasks

HW requirements depend on the SC of the
AUTOSAR OS

7.2.4.10 Yes

Depending on the AUTOSAR OS SC detection of
memory protection and/or timing violation
possible. (see 7.2.4.9)
AUTOSAR defines a set of diagnostic services. (see
7.2.4.8)

7.2.4.11 N/A
Requirement is not covered within the scope of
AUTOSAR

7.2.4.12 N/A
Requirement is not covered within the scope of
AUTOSAR

7.2.4.13 N/A
Requirement is not covered within the scope of
AUTOSAR

7.2.4.14 N/A
Requirement is not covered within the scope of
AUTOSAR

7.2.4.15 N/A
Requirement is not covered within the scope of
AUTOSAR

7.2.4.16 N/A
Requirement is not covered within the scope of
AUTOSAR

7.2.4.17 N/A
Requirement is not covered within the scope of
AUTOSAR

7.2.4.18 N/A
Requirement is not covered within the scope of
AUTOSAR

7.2.4.19 N/A
Requirement is not covered within the scope of
AUTOSAR

7.2.4.20 N/A
Requirement is not covered within the scope of
AUTOSAR

Verification is out
the scope of S4R.
The future projects
to be developed
after S4R can cover
verification issues.
For S4R the proof
of concept will be
provided.

7.2.4.21 N/A
Requirement is not covered within the scope of
AUTOSAR

7.2.4.22 N/A
Requirement is not covered within the scope of
AUTOSAR

7.3 Architecture and Design

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 47 of 54

7.3.4.1 Partially

AUTOSAR requires a common technical approach
for some steps of system development.
This approach is called the AUTOSAR
methodology.
The AUTOSAR methodology defines roles and
responsibilities.

7.3.4.2 Yes
AUTOSAR defines standardized architecture
definition.

7.3.4.3 Partially

Depending on the requested SIL level of the
application the decision for different AUTOSAR
OS SCs could be taken by the architect.
This results in different services provided by the
OS.

Self-evident
requirement

7.3.4.4 Yes

Application software in AUTOSAR is decoupled
from the ECU hardware by the mean of the
Runtime Environment (RTE) and the Virtual
Functional Bus.
The RTE must be individually generated for each
ECU configuration.

7.3.4.5 N/A
Requirement is not covered within the scope of
AUTOSAR

7.3.4.6 N/A
Requirement is not covered within the scope of
AUTOSAR

Self-evident
requirement

7.3.4.7 N/A
Requirement is not covered within the scope of
AUTOSAR

7.3.4.8 N/A
Requirement is not covered within the scope of
AUTOSAR

Self-evident
requirement

7.3.4.9 N/A
Requirement is not covered within the scope of
AUTOSAR

Self-evident
requirement

7.3.4.10 Partially

AUTOSAR defines standardized architecture
definition.
Traceability of requirements toward software
architecture definition oi not covered within the
scope of AUTOSAR.

Self-evident
requirement

7.3.4.11 Yes

AUTOSAR provides the so-called Function
Inhibition Manager (FiM), which is responsible is
responsible for providing a control mechanism
for software components and the functionality
therein.
The FiM is closely related to the Diagnostic Event
Manager of AUTOSAR, since diagnostic events
and their status information are used as inhibit
conditions for functionalities in SW components,
however, they are not limited to them.
Functionalities of the BSW can also use the FiM

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 48 of 54

services.

7.3.4.12 N/A
Requirement is not covered within the scope of
AUTOSAR

Self-evident
requirement

7.3.4.13 Yes

AUTOSAR does not make any difference in the
development between project specific SW
components and generic SW components, which
can be reconfigured by data or algorithms.
The SW components are always atomic and the
interfaces are clearly defined.

7.3.4.14 Partially

Some of the listed techniques and measures in
the Table A.3 from Annex A of EN 50128 are
applicable with AUTOSAR, other do not have
relation to the standard.
The list below gives some statements with
respect to AUTOSAR regarding the relevant
techniques as suggested by EN 50128 (Numbers
in the following list as in the Table A.3):

- No. 1 Defensive programming – Can be
applied in the application SW
(mechanisms like Diagnostic Event
Manager, Diagnostic Communication
Manager provided by AUTOSAR)

- No. 3 Error-correcting codes – No
restrictions from AUTOSAR -> can be
applied in the application SW

- No. 4 Error-detecting codes – Some
mechanisms provided (End2End
communication protection)

- No. 5 “Failure Assertion” programming –
No restrictions from AUTOSAR -> can be
applied in the application SW

- No. 7 Diversity programming – No
restrictions from AUTOSAR -> can be
applied in the application SW

- No. 12 Memorizing Executed Cases – Not
provided by AUTOSAR

- No. 15 Software Error Effect Analysis –
Not provided by AUTOSAR

- No. 19 Complete interface definition –
All types of interfaces and possible
interfaces are defined in the AUTOSAR
standard, interfaces towards application
software should be defined with the
system configuration

- No. 21 Modelling – Defined by AUTOSAR

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 49 of 54

for the basic software. Should be done
project specific for the application
software

- No. 22 Structured process – Architecture
definition standardized

EN 50128 defines combinations of these
techniques which are suitable to reach the
different SIL levels.
Based on the statements above, although not all
methods / techniques are provided by AUTOSAR,
AUTOSAR can fulfill the requirements of the EN
50128 up to SIL 4.

7.3.4.15 N/A
Requirement is too high level, not covered within
the scope of AUTOSAR

Self-evident
requirement

7.3.4.16 N/A
Requirement is too high level, not covered within
the scope of AUTOSAR

Self-evident
requirement

7.3.4.17 N/A
Requirement is too high level, not covered within
the scope of AUTOSAR

There is no
intention to use
the prototype built
within S4R in a
target system. It is
planned for proof-
of-concept phase
of the project only.

7.3.4.18 Yes

All types of interfaces and possible interfaces are
defined in the AUTOSAR standard, interfaces
towards application software should be defined
with the system configuration.

Self-evident
requirement

7.3.4.19 Partially

The AUTOSAR interface definition includes the
requested by EN 50128 features.
Some of the requested by EN 50128 interface
features are covered by the AUTOSAR
methodology in the system configuration, e.g.
definition of boundaries for the interface values.
For some of the requested features there is no
restriction from the AUTOSAR standard and
these could be implemented in the application
software, e.g. behavior at the boundary value
and if the current interface value is outside of
the defined range.

7.3.4.20 Partially

AUTOSAR requires a common technical approach
for some steps of system development.
This approach is called the AUTOSAR
methodology.
The AUTOSAR methodology defines roles and
responsibilities.

Requirements,
Architecture and
Interface
Documents are
covered; however,
design
specification is not
covered within the
scope of S4R.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 50 of 54

7.3.4.21 N/A
Requirement is too high level, not covered within
the scope of AUTOSAR

Requirements,
Architecture and
Interface
Documents are
covered; however,
design
specification is not
covered within the
scope of S4R.

7.3.4.22 N/A
Requirement is too high level, not covered within
the scope of AUTOSAR

Design
specification is not
covered within the
scope of S4R.

7.3.4.23 Partially

Some of the requested aspects of the software
design like definition of SW components and are
covered by AUTOSAR, Other like the traceability
of requirements towards SW components not.

Design
specification is not
covered within the
scope of S4R.

7.3.4.24 Partially

Some of the listed techniques and measures in
the Table A.4 from Annex A of EN 50128 are
applicable with AUTOSAR, other do not have
relation to the standard.
The list below gives some statements with
respect to AUTOSAR regarding the relevant
techniques as suggested by EN 50128 (Numbers
in the following list as in the Table A.4):

- No. 1 Formal methods – Not provided by
AUTOSAR

- No. 2 Modelling – Defined by AUTOSAR
for the basic software. Should be done
project specific for the application
software

- No. 4 Modular Approach – Supported by
AUTOSAR

- No. 5 Components – AUTOSAR
application software is divided into
software components (atomic software
units)

- No. 6 Design and implementation
standards – MISRA-C standard (C
standard of the Motor Industry Software
Reliability Association) should be applied

- No. 8 Strongly typed programming
languages – All declarations in AUTOSAR
done in the Runtime Environment (no
type inconsistency due to this
architecture approach)

- No. 9 Structured Programming – No
restrictions from AUTOSAR -> can be
applied in the application SW

- No. 10 Programming language –

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 51 of 54

AUTOSAR supports for safety critical
software applications only C as a
programming language

EN 50128 defines combinations of these
techniques which are suitable to reach the
different SIL levels.
Based on the statements above, although not all
methods / techniques are provided by AUTOSAR,
AUTOSAR is able to fulfill the requirements up to
SIL 4 only if with the architecture approach of
AUTOSAR point No. 8 is considered to be
obsolete.
If pint No. 8 cannot be neglected only SIL 2 can
be reached.

7.3.4.25 N/A
Requirement is not covered within the scope of
AUTOSAR

7.3.4.26 N/A

Requirement is not covered within the scope of
AUTOSAR
AUTOSAR requires application of MISRA-C
standard (C standard of the Motor Industry
Software Reliability Association).

7.3.4.27 N/A
Requirement is not covered within the scope of
AUTOSAR

7.3.4.28 N/A
Requirement is not covered within the scope of
AUTOSAR

7.3.4.29 /
7.3.4.39

N/A
Requirement is not covered within the scope of
AUTOSAR

Integration tests
are not covered
within the scope of
S4R. Therefore a
test specification
will not be
produced in this
project.

7.3.4.40 N/A

AUTOSAR requires a common technical approach
for some steps of system development.
This approach is called the AUTOSAR
methodology.
The AUTOSAR methodology defines roles and
responsibilities.

Verification is not covered within the scope of
AUTOSAR

Instead of a full
verification
process, a proof-
of-concept
demonstration will
be done within the
scope of S4R.

7.3.4.41 N/A
Requirement is not covered within the scope of
AUTOSAR

Instead of a full
verification
process, a proof-
of-concept
demonstration will
be done within the
scope of S4R.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 52 of 54

7.3.4.42 N/A
Requirement is not covered within the scope of
AUTOSAR

7.3.4.43 N/A
Requirement is not covered within the scope of
AUTOSAR

7.4 Component design

7.4.4.1 N/A

AUTOSAR requires a common technical approach
for some steps of system development.
This approach is called the AUTOSAR
methodology.
The AUTOSAR methodology defines roles and
responsibilities.

Component design is not covered within the
scope of AUTOSAR

7.4.4.2 N/A

AUTOSAR requires a common technical approach
for some steps of system development.
This approach is called the AUTOSAR
methodology.
The AUTOSAR methodology defines roles and
responsibilities.

Documentation of component design is not
covered within the scope of AUTOSAR

7.4.4.3 N/A

AUTOSAR requires a common technical approach
for some steps of system development.
This approach is called the AUTOSAR
methodology.
The AUTOSAR methodology defines roles and
responsibilities.

Documentation of component design is not
covered within the scope of AUTOSAR

7.4.4.4 N/A
Requirement is not covered within the scope of
AUTOSAR

7.4.4.5 N/A
Requirement is not covered within the scope of
AUTOSAR

7.4.4.6 Partially See comments on 7.3.4.24

7.4.4.7 /
7.4.4.13

N/A
Requirement is not covered within the scope of
AUTOSAR

7.5 Component implementation and testing

All N/A
Requirements in this section are not covered
within the scope of AUTOSAR

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 53 of 54

Chapter 11 Annex 3 – AUTOSAR Analysis

to IEC62443

Section
Nb
IEC
62443-3-
3

Compliance
of

AUTOSAR
Comments & AUTOSAR application

5 FR 1 – Identification and authentication control

N/A

All requirements in this section with exception of the listed below are not
covered by AUTOSAR.

5.7 Partially
AUTOSAR offers Cryptographic service library, which could be accessed
from application software and basic software layers.

5.8 Partially
Only wireless Ethernet handled by AUTOSAR. User authentication handled
in the standard for Car2Car communication and not by AUTOSAR.

6 FR 2 – Use control

 N/A
All requirements in this section with exception of the listed below are not
covered by AUTOSAR.

6.10 Partially
Auditable events partially handled by AUTOSAR by the mean of Diagnostic
Event Manager.

6.12 Partially
Response to audit processing failures partially handled by AUTOSAR by
the mean of Diagnostic Event Manager.

6.13 Yes

The absolute value of the synchronized global time is provided in
AUTOSAR by the BSW module “Synchronized Time-Base Manager”
(StbM). The StbM interacts with the BSW communication modules to
handle time synchronization by the means of necessary
communication protocols. Time synchronization over CAN, Ethernet
and FlexRay is currently possible with AUTOSAR.

7 FR 3 – System integrity

 N/A
All requirements in this section with exception of the listed below are not
covered by AUTOSAR.

7.3 Yes
AUTOSAR offers Cryptographic service library and End2End
communication service library, which could be accessed from application
software and basic software layers.

8 FR 4 – Data confidentiality

 N/A
All requirements in this section with exception of the listed below are not
covered by AUTOSAR.

D2.2 – Report on analysis of ‘functional distribution architecture’
 frameworks and solutions

Safe4RAIL D2.2 Page 54 of 54

8.5 Yes
AUTOSAR offers Cryptographic service library, which could be accessed
from application software and basic software layers.

9 FR 5 – Restricted data flow

 N/A
All requirements in this section with exception of the listed below are not
covered by AUTOSAR.

9.4 Partially
AUTOSAR offers Cryptographic service library and End2End
communication service library, which could be accessed from application
software and basic software layers.

10 FR 6 – Timely response to events

 N/A
All requirements in this section with exception of the listed below are not
covered by AUTOSAR.

 Partially
Response to audit processing failures partially handled by AUTOSAR by
the mean of Diagnostic Event Manager.

11 FR 7 – Resource availability

 N/A
All requirements in this section with exception of the listed below are not
covered by AUTOSAR.

11.9 N/A
Implementation in the application SW layer possible. (so-called Limp Home
mode in automotive domain)

11.10 N/A
Implementation in the application SW layer possible, which provides the
SW and HW versions at runtime.

