

Electronic Brake by Wire

Angelo Grasso, Wabtec

Martin Deuter, Knorr Bremse

Ugo Prosdocimi, Eletech

CONNECTA has received funding from the European Union's Horizon 2020 research and innovation programme under agreement No: 730539. Safe4RAIL has received funding from the Shift2Rail Joint Undertaking under grant agreement No: 730830. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme.

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

Why? Brake by Wire

Today	With Brake by Wire						
Train brakes control largely based on mixed pneumatic electrical technologies	Train brakes control and communication based on safe electronic technologies						
Emergency Brake based on pneumatic command and safety loop control	EB part of an electronic system able to work with safety requirements up to SIL4						
Braking distances limited by pneumatic components behaviour	Electronic improves brake efficiency, reduces braking distances and increase railway traffic capacity						
Different subsystems for different brakes functionalities (EB, ES, PB, WSP)	Integrated controller able to manage all the main brakes functionalities						
Different brake parts	Optimisation, reducing the number of sophisticated pneumatic components. Improving overall LCC						
Custom solutions to interface brakes and train technical systems	IMP to support safety system integration between brake and technical systems						
Safe4RAIL – SAFE architecture for Robus	t distributed Application Integration in roLling stock (730830)						
CONNECTA – CONtributing to Shift2Rail's NExt generation of high Capable and safe TCMS and brAkes (730539) 165							

• High Safety Electronic pressure control, used to implement Electric Brake in Service and Emergency with integrated WSP:

Advantages:

- 1. Improvement of the cylinder EB pressure output accuracy.
- 2. Simplification of train wiring & piping
- 3. Regulate emergency brake effort based on actual speed in a continuous way.
- Simplification & scalability of brake system: possibility to use Electro Dynamic brake in Emergency
- 5. advantages LCC, noise reduction and energy saving.

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830) CONNECTA – CONtributing to Shift2Rail's NExt generation of high Capable and safe TCMS and brAkes (730539)

Process Approach

- The conceptual organization of the technical activities is provided through a **V-cycle** tailoring the generic representation provided by the EN 50126.
- Functional model and Functional Requirements have been jointly defined by CTA & S4R
- Requirements taking care:
 - TSI safety requirements
 - Pre HAZARDs outputs
- Result: EDV Brake Function REQs & NG-TCN Communication Data

1										BRAKE SYSTEM REQUIREMENTS	164.02
2					2	Source					
() ()	D	Requiementies	19	EN 16185	EN E'34	02.8	1526	UC	Othe	Rationale	Function/Sub- function/System involved
Ì		TERAKE SYSTEM		-	\square	\square		T			and the second
4											
		The total system or all encours for the training speed can be well, and the initiation of an above, a clear the training ear to expose to which the maximum all well be balances. Balancia de encours (helmobilization of anal).	424.01)							B we suter
	10.1	The sametadakinis explosed by applying attractives decryptometal when patients a decreasing the set is an and the set of the set add of a set is an and the set of the requested by set of							н	Sie 305-01 's take abakitatmah	B ale goler
1	10.11	The taske system has available 4 different specifikskesst spoly abraike fortenorme sall o obrain anstandarion :								This yoeso' sale as the only one physical possible applightness the self aerodynamic taske is no consider on this knotched weakments the ne sankinet arenzy conter trademed in hear (bythe lan) or in reachaned in electrical arenzy.	Вайе думет

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

Brake system Safety analysis performed jointly with S4R

Inputs

- Brake System functional model and use cases
- Collection of the main hazardous scenario related to brake system

Output

- List of Countermeasures to be applied in the System Design
- List of Application Conditions
- List of Safety
 Recommendations

1 C		Inn	JIL
EB1.	Emergency brake command generation	≤ 10-9	SIL4
EB2.	Actual Emergency Braking Power Calculation	≤ 10-9	SIL4
EB3.	Emergency brake command transmission	≤ 10-9	SIL4
EB4.	Emergency Local brake force generation	≤ 10-9	SIL4
EBS.	Emergency brake energy storing	≤ 10-9	SIL4
EB6.	Traction cut off	≤ 10-9	SIL4
EB7.	Emergency brake state and fault detection and indication (applied/ released/ faulty/ isolated/ no info)	≤ 10-9	SIL4
EB8.	Emergency brake isolation	≤ 10-9	SIL4
SB1.	Service brake train retardation request	10-7 < THR ≤ 10-5	SIL1-SIL2
SB2.	Service brake request transmission	10-7 < THR ≤ 10-5	SIL1-SIL2
SB3.	Train Load Calculation	10-7 < THR ≤ 10-5	SIL1-SIL2
SB4.	Train Brake Force Calculation	10-7 < THR ≤ 10-5	SIL1-SIL2
SBS.	Blending (speed and/or addresion and/or load and/or brake disk temperature dependent)	10-7 < THR \$ 10-5	SIL1-SIL2
SB6.	Service brake force application energy storing	10-7 <thr 10-5<="" td="" ≤=""><td>SIL1-SIL2</td></thr>	SIL1-SIL2
SB7.	Holding brake	10-7 < THR ≤ 10-5	SIL1-SIL2
SB8.	Traction cut off	-	
SB9.	Service brake state and fault detect on and indication (applied/ released/ faulty/ isolated/ no info)	2	
SB10.	Service brake isolation	10-7 < THR ≤ 10-5	SIL1-SIL2
PB1.	Parking brake command generation	≤ 10-9	SIL4
PB2.	Parking brake train command transmission	≤ 10-9	SIL4
Analysis ,	Inputs Safety Targets Allocation / 1	1	ing ini

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

LCC (II)

From the LCC analysis, the EDV device allows to reduce the use of pneumatic components

Preventive Maintenance 28% Reduction Off.

Corrective Maintenance

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

EDV FT Architecture

WP5 Competitive Design

- EDV Sub System Design: the activity will be finalized to development of a control board for the HIGH SIL system, identified as Electronic Distributor Valve (EDV).
- integration with NG_TCN proposed architecture
 - embedded virtual A-Plane and B-Plane for scheduled data traffic (TSN domains)
 - Safety-End Device (e.g EDV) are connected to both planes

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

EDV FT Goal

EDV FT hw architecture

- Safety requirements taking care of axle redundancy
 - THR applicable target
 - resilience to single fault not requested
- Architecutre is 2002 acting "reactive failsafety" as EN 50129
- LCU1 is the "main computation channel"
- LCU2 is the "checking channel".
- Interface to NG-TCN control is support by specific BCU I/O

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

KB EDV Architecture

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

Knorr-Bremse Goal

Local Application Device LAD with CPU sub device for High Safety Level Architecture

Technology:

- High Safety Level Electronic Architecture on SIL 3/4 Level for Brake Control
- LAD Application SW on SIL 3/4 Level
- NG TCN Communication to Brake Control Electronic Units
- SIL3/4 Assessment of the Local Application Device LAD

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

S4R Brake by Wire

• S4R Brake by Wire project goal

define the requirements and the safety concept for a high safety (SIL4)
 Brake Electronic Control (EC) based on the IMP

• S4R Brake by Wire means

- system design down to electronic control
- fully integrated with train technical systems
- focused on the Emergency Brake as the highest safety demanding brake functionality (SIL4)

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

S4R Brake by Wire

• development covers :

- functional model of an advanced train brake system
- safety requirements added through an Hazard Analysis with safety countermeasures definition
- System architectural development
- Electronic Control requirements, parted in:
- central control (Vehicle Control Unit)
- local physical brakes i/o control (Remote Brake Control Unit)
- requirements propagated to IMP and train technical systems

development executed :

- respecting railway standard EN50126 with :
 - top down V process
 - safety process
 - Safety V&V
 - Safety Indipendent Assesment

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

SafeyRAIL S4R Brake by Wire : requirements

Project boundaries: •

- **EB Emergency Brake**
- ADFB (disk brake) •

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830) CONNECTA – CONtributing to Shift2Rail's NExt generation of high Capable and safe TCMS and brAkes (730539)

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

S4R Brake by Wire : Requirements

- Central brake control (Vehicle Control Unit) :
 - IMP high availability and SIL4 features
 - coordinates differents type of brake requests : Service Brake, Parking Brake, Emergency Brake
 - allows speed management aligned with the available brake capacity granting safety stopping distances
 - automatically manages running capability
 - manages single brake units isolation
 - manages single brake units remote release
 - manages train weight measure

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

S4R Brake by Wire :

• Local brake disk control (Remote Brake Control Unit RBCU) :

- remote i/o
- safety monitoring fuctionalities
- local pneumatic pressure loop control
- i/o interfaces parted on the base of safety functional indipendency needs

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

S4R Brake by Wire : Safety Process

• Safety activities defined consistently with

- Preliminary Hazard Analysis
- Risk Assessment
- FTA THR allocation
- •Safety Requirements Verification &
- Anomalies Management
- Safety Assessment

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)

- System developments based on this concept work will :
 - be able to substitute with a SIL4 electronic control the pneumatic and electric control technologies
 - deliver the innovative functionalities provided by the model jointly defined with Connecta
 - allow full integration for the whole braking functionalities
 - ask for the use of the IMP platform at its highest level of safety and availability features
- The work delivers a clear evidence for the need of a train integrated high safety control and communication platform as the IMP :
 - the brake system, surely for the emergency brake function, is a SIL4 application distributed all along the train with the need to interface at the maximum safety level almost all the other train technical system
 - the complexity of this task, since it involves the whole train control systems, seems affordable only if based a strong common safety platform

Safe4RAIL – SAFE architecture for Robust distributed Application Integration in roLling stock (730830)