

General Specification of next-generation TCMS

Stefan Tesar, DB

CONNECTA has received funding from the European Union's Horizon 2020 research and innovation programme under agreement No: 730539. Safe4RAIL has received funding from the Shift2Rail Joint Undertaking under grant agreement No: 730830. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme.

Safe4RAIL - SAFE architecture for Robust distributed Application Integration in rolling stock (730830)

CONNECTA - CONtributing to Shift2Rail's NExt generation of high Capable and safe TCMS and brAkes (730539)

- It describes what a NG TCMS needs to do
- It describes the functions of the NG TCMS
- It describes what functions a NG TCMS needs to fulfil
- It's the basis for the development of the NG TCMS
- It's the basis for **ALL further development**

Why General Specification TCMS?

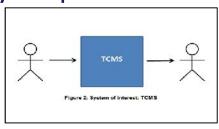
Today	NG TCMS SPECIFICATION
TCMS today is described by requirement specifications	The NG TCMS is described by its functions by User Stories and Use Cases
TCMS today is described by long lists of requirements	For the NG TCMS we used a SysML Modelling Tool, named Magic Draw
Local Databases within company	Tracing from functional requirement to technical requirement to implementation
Working on databases within the company LAN	Europe wide collaboration to work on the general specification on a secure server
Inconsistencies in requirement specifications	Structured procedure from function to technical implementation

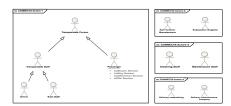
US

UC

System Engineering

Engineering and Modelling the System Step by Step

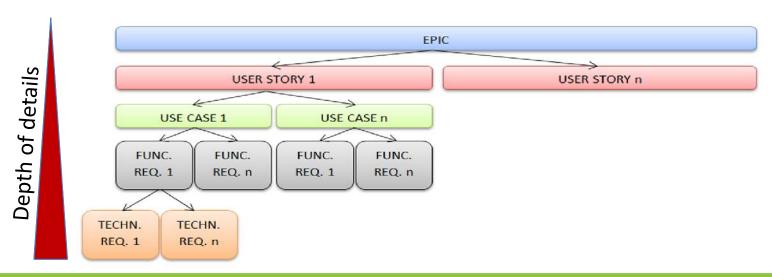

• Definition of the System's boundaries SB


• Definition of Epics as funtion groups EP

· Analysis of the actors AC

• Creation and compilation of User Stories

• Creation and compilation of Use Cases



Structuring the "General Specification"

- From the system's Big Picture to the technical detail
- Structure for functional specification created Epics UserStories UseCases non functional requirements

Functional System Development II User Stories

A "user story" describes what a user wants to achieve with the system. It describes the "who", "what" and "why" of a request at the highest abstraction level.

The user story sentence template is:

"As a <role>, I want <goal/desire> so that <benefit>"

Example:

 As a train driver, I want to release the doors so that pa 	passengers can exit and enter the train
---	---

2.

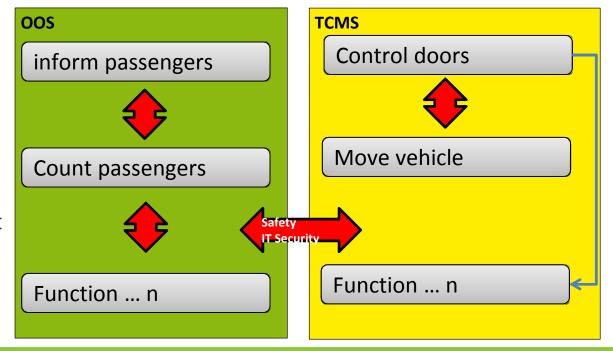
•••

300.

Functional System Development III – Safe46 **Use Cases**

A use case describes the different ways a user (actor) can use a system to achieve a specific goal. An entire set of use cases describes all uses of the system and the resulting benefits. A complete set describes the scope of the system - which functions it fulfills and which function does not.

ID OI	EPIC	User Story ID	Name	Short Description	Basic Flow	Subject	PrimaryActor	SecondaryActor	Trigger	Precondition
UC-1.2-	[1.2]		Set Seat Reservation	The RU wants to set the seat	TO SEE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	TCMS	Railway		Railway	PIS is onlin
800	Superordinate			reservation.	data forthe seat reservation		Undertaki		Undertaking uses	communica
	d Vehicle				of the train		ng		the Set Seat	
	Control				2.) RU triggers the transfer				Reservation	
					mechnism				Mechanism to set	
					3.) Information is received				the seat	
					by train				reservations.	
					4.) Reservation system					
					transfer the reservation					
	I I		I	I	information to the cost		1 1			I



Functional System Development III: Logical architecture

Logical structures of a system.

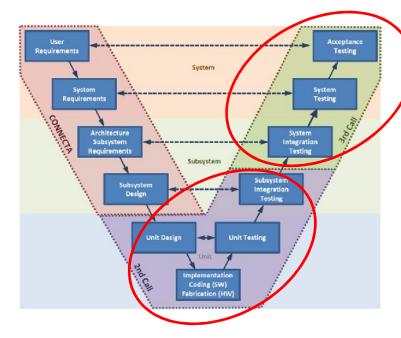
The communication requirements between the functions are shown.
Interfaces do derive from that

Functions of a system and their classification to a function domain are shown

Conclusions

- NG TCMS needs to be modeled by using SysML due to the high complexity
- Great team collaboration that supports the common understanding of the system
- The "General Specification" leaves open space for possible technical implementations
- The "General Specification" will be consequently updated, specification gaps closed with new insights generated during the system development

38



Next station is

CTA II:

Development of the NG TCMS based on the general specification and iteration loops

CTA III:

Testing and validation of the general Specification